Geothermal Technologies Office 2013 Peer Review

FRAC-STIM: A Physics-Based Fracture Stimulation, Reservoir Flow and Heat Transport Simulator (aka FALCON)

Project Officer: B. Segneri
Total Project Funding: \$1,079 K

April 24, 2013

Robert Podgorney Idaho National Laboratory

R&D

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Relevance/Impact of Research

Objective

 Develop a true "fully coupled" simulation code that can be used for simulating coupled THMC process of EGS and hydrothermal reservoirs—at real world relevant scales

Challenges, barriers, and knowledge gaps addressed

- Current modeling of reservoir stimulation relies largely on linking (coupling) separate legacy simulation codes serially (via input decks) to solve separate parts of the system
 - Essentially "de-couples" the processes
 - Largely built upon legacy codes that don't take advantage of modern, high-performance computing
 - · Effects of coupling method poorly understood

Innovative aspects

- Solve all governing equations simultaneously, using Fully Globally Implicit solvers (for fluid flow, heat transport, geomechanics, reactive transport)
 - Method identified as best approach for coupled problems since 1980's, but deemed impractical to implement
- Built on massively parallel framework, can be used to examine real world spatial scale problems at relevant time scales
- Takes advantage of recent advances in high performance computing, such as linear and nonlinear solvers, adaptive mesh refinement, physics-based preconditioning, etc.

Impact to the Geothermal Technologies Office

- Code can be used gain insight into EGS reservoir creation and long-term permeability evolution
- Evaluate stimulation and reservoir management scenarios that minimize thermal drawdown
- Code can be used for any THMC problem, exportable beyond GTO

Scientific/Technical Approach (1)

Loose Coupling / Operator Split

- 1. Solve PDE1
- 2. Pass Data
- 3. Solve PDE2
- 4. Move To Next Timestep

Sequential Coupling w/Iteration

- 1. Solve PDE1
- 2. Pass Data
- 3. Solve PDE2
- 4. Pass Data
- 5. Return to 1 Until Convergence
- 6. Move To Next Timestep

Fully Coupled

- 1. Solve PDE1 and PDE2 simultaneously in _one_ system
- 2. Move To Next Timestep

3 | US DOE Geothermal Office

Scientific/Technical Approach (2)

Motivation for our approach

Weakly coupled processes — excellent agreement between fully-coupled and operator-split approaches Strongly coupled processes — better agreement between fully-coupled and the reference solution

EGS reservoir creation involves a number of tightly coupled processes, and solving these tightly coupled equations in a loosely coupled way carries the potential for error

Scientific/Technical Approach (3)

- Fully couple the model at the physics level of the problem
 - Develop 'kernels' for small, manageable parts of the problem (each term of the governing PDEs)
 - Couple the kernels at the PDE level
 - Solve all simultaneously, fully coupling the physics
- Developmental Framework
 - Finite element methods, coded in C++
 - Use INL framework library-Multiphysics Object Oriented Simulation Environment (MOOSE)
 - Apply state of the art nonlinear PDE solvers and tools/libraries
 - Jacobian Free Newton Krylov (JFNK) method
 - PETSc, Trilinos, hypre, NOX, libMesh
- Framework Interface conceals complexity
 - Provides core set of common services
 - Plug-and-play API
- Adaptable and easy to implement new physics

Scientific/Technical Approach (4)

Accomplishments, Results and Progress (1) **ENERGY** Energy Efficiency & Renewable Energy

- Code has been developed, milestones met. Code is released/available for use
 - Global Implicit Approach recognized as the 'State of the Art" as early as 1980's, but perceived to be impractical for use a relevant temporal/spatial scales
- Lead framework developer (Derek Gaston) received Presidential Early Career Scientist Award
- Receiving international attention and licensing
 - CSIRO, IESE
 - Program coordination, Iceland GEORG
- Received multiple GRC "Best Presentation" Awards, pubs in queue

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Prepare final report	Same	9/30/12
Share code/licensing	Same	9/30/12

Accomplishments, Results and Progress (2) ENERGY | Energy Efficiency & Renewable Energy

Multiphase Fluid flow

 Two phase requires pressure-enthalpy, single phase can use pressure-temperature

Energy transport

Written in terms of temperature or enthalpy as primary variable

Reactive Transport

- Aqueous equilibrium speciation
- Kinetic mineral precipitation/dissolution
- Reaction induced porosity-permeability change

Geomechanics

- Solve in terms of displacement
- Abaqus
- Use stress as indication of near failure conditions, strain for changes in permeability

Supporting kernels

- EOS (IAPWS97/2008), material properties, constitutive relations, IO, adv. time stepping
- GSLib inferface
- FracMan interface

Accomplishments, Results and Progress (3) ENERGY | Energy Efficiency & Renewable Energy

- Adaptive Mesh Refinement and Fracture Flow (animation)
 - Based on error estimation
 - Interface with FracMan© fracture distributions

Accomplishments, Results and Progress (4) **ENERGY** Energy Efficiency & Renewable Energy

- Thermal Stimulation of a Fault Zone (animation)
 - Reproduce injection behavior in HN-09, Hengill, Iceland
 - Evaluation of stimulation plan in RRG-09, Raft River, ID

10 | US DOE Geothermal Office

Accomplishments, Results and Progress (5) ENERGY Energy Efficiency & Renewable Energy

• Thermal Evolution of an Idealized Fractured System (animation)

Accomplishments, Results and Progress (6) ENERGY Energy Efficiency & Renewable Energy

- EGS presents a unique challenge:
 - Fully-implicit, fully-coupled simulations with of lots of variables.
- High resolution domains are preferred to capture large variances in material properties, i.e., fractures
- Code scales very well on both the low and high end
 - High end is: 5 fully-coupled variables, 33 Million elements, 200+ Million DoFs

12 | US DOE Geothermal Office

Future Directions

- Project complete, code and capability development continues
- Planned improvements include
 - Implement control volume FEM: better mass and energy conservations while still take full advantage of FEM on geomechanics modeling
 - Better material property models for porosity/permeability changes induced by fracturing and postfailure hydraulic/mechanical behaviors
 - Incorporate simpler approaches to modeling fracture distribution (e.g. dual permeability model)
 - Provide link to inverse modeled parameter estimation tools
 - Extend to supercritical conditions
- Simulate EGS demonstration at Raft River
 - Start with basic system—fault zone
 - Examine entire reservoir later
- Deployment strategy = Collaborate, code currently licensed to
 - Institute for Earth Science and Engineering, Univ. of Auckland
 - CSIRO and University of Western Australia
 - EGI, University of Utah
 - Others in process
- Expected outcome is a numerical tool that can help elucidate system behavior under the most challenging computation circumstances, and be used in a predictive capacity at relevant spatial scales and resolution

Mandatory Summary Slide

- All "fully coupled" codes not created equally
- FALCON is built from the ground up as a geothermal reservoir analysis tool, suitable for
 - Testing hypotheses about reservoir evolution
 - Capturing detailed reservoir characteristics in large-scale models
 - Computationally intensive reservoir modeling problems (eg. inverse problems) via application of state-of-the-art numerical methods
 - Quickly incorporating "new" physics into reservoir simulation
- FALCON/MOOSE framework recognized internationally
 - After touring a number of US DOE and European labs, CSIRO chose our framework to build geothermal numerical capabilities
 - FALCON developers invited to coordinate model development activities for Iceland's GEORG

Project Management

Timeline:

Planned	Planned	Actual	Current
Start Date	End Date	Start Date	End Date
April 2009	Sept 2011	October 2009	Sept 2012

Budget:

Federal Share	Cost Share	Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date	Funding needed to Complete Work
\$1,079K	\$0	\$1,079K	\$1,078.8K	\$2,500K	???

- Project leverages internal LDRD funds for Subsurface Science and Nuclear Fuels Modeling
- Collaborations bringing on additional coders and data at no cost
 - · CSIRO in Australia
 - IESE in New Zealand
 - · GEORG in Iceland
 - · EGI, MIT, LSU, others
- Contributing the the Raft River EGS Demo
 - Stimulation plan evaluation
 - Reservoir modeling