

Technology Development and Field Trials of EGS Drilling Systems

April 22-25, 2013

This presentation does not contain any proprietary confidential, or otherwise restricted information.

David W. Raymond, PI Steven D. Knudsen, Co-PI Sandia National Laboratories ARRA Funded R&D

Relevance/Impact of Research

Objective

- Develop fit-for-purpose EGS drilling solutions for geothermal exploration and production drilling
 - Hard/abrasive/fractured rock, high temperature, deep drilling

Purpose

- Improved drilling technologies that reduce costs by drilling faster with improved life, capabilities for improved hard stringer penetration, and are appropriate for deep drilling applications
- Improved support for economic development of geothermal resources
 - Increase in the number of tools / options available for geothermal well construction
 - Service companies engaged in geothermal drilling market
 - Broad experience base to promote continued geothermal well construction

Relevance/Impact of Research (continued)

- Challenges/Barriers addressed on this project
 - Risk Reduction
 - Limitations of Laboratory Testing
 - Service Company Investment
 - Drilling Industry Acceptance
- Impact/Performance
 - Potentially reduce geothermal drilling costs via improved ROP & increased bit life
 - Nominal baseline is sealed roller cone performance in hard abrasive rock (low ROP: 10-20 ft/hr, short life: 40 hrs)
 - PDC Bits drill proportionally faster
 - Derive benefit from O&G/Minerals research in comparable domains
 - Catalyze industry via improved / economical deep hole access
- Innovation
 - Provides pathway for introduction of advanced technology with service company support

Scientific/Technical Approach

Overall Approach

Three Phases over Three Years (ARRA-funded for two of three years)

- Phase 1 Preliminary field trials to demonstrate potential & highlight deficiencies (Yr 1: ARRA-funded)
- Phase 2 Service company involvement in performance remediation and custom development (Yr 2: ARRA-funded)
- Secondary/Follow-Up field trials for verification & validation (Yr 3: Non-ARRA funded)
 - Demonstrate technology readiness for geothermal drilling
 - Verify design improvements realized in year two

Highlights

- Direct partnership with geothermal operators/developers
- Service companies directly involved in bit development & testing

Scientific/Technical Approach (continued)

Overall approach included the following elements:

- Technical Interchange Meetings with Team
- Develop well-defined drilling plans
- Pre-selection of fit-for-purpose bit solutions
- Data acquisition system development
 - Surface system integration
 - Downhole via service company tools
- Sandia-monitored field drilling deployment with on-going monitoring activities
- Direct involvement of service companies during tool specification and field testing
- Data reduction and analysis
- Post-mortems on bit conditions
- Next generation bit development and testing

Bit 1 Test Results

Bit 1A: Pre-Drill

Bit 1 stand average ROPs

Bit 1A: Post-Drill After 726 ft.

Bit 2 Test Results

Bit 2 ROP Per Stand 2200 2300 2400 Depth (ft) 2500 2600 Average ROP ROP (ft/hr)

Bit 2A: Pre-Drill

Bit 2 stand

average ROPs

Phase 2 bit is similar to bit 1
Phase 2 bit is denoted bit 3
First run in Sierra White
showed minor cutter
selection problem

3 Bit Pre-drill

Bit 3 Post drill

Bit 1: Pre-Drill Sharp Condition

E813M ROP - WOB

RPM

E813M TOB - WOB

DEFINING TWO VARIABLES OF INTEREST

$$SPE = \frac{2 * TOB * 60 * RPM}{r^2 * ROP}$$
 psi
$$S = \frac{WOB}{r * DOC}$$
 psi

WHERE:

TOB = Torque On Bit

RPM = Bit Revolutions Per Minute

ROP = Rate Of Penetration

DOC = Depth Of Cut

r = Radius of the bit

Accomplishments, Results and Progress

- Major results from Phase 1 testing
 - 813 didn't have much impact damage
 - 713 had significant impact damage
 - Torque control components are key
 - Abrasion not an issue
 - Rig needs more torque capacity
- Major results from Phase 2 design effort
 - New bit designed building on success of earlier 813 bit
 - TCC type and setback optimized
 - Will result in 2 bits to test

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Phase 1 Field Test	Chocolate Mountain	Dec 2011
Phase 2 Bit Design	Successful Bit 2 Test	Nov 2012

Summary Slide

- Rock Reduction Technology
 - Mature for conventional geothermal drilling
 - Present technology (roller cone bits) will inhibit commercially viable development of EGS resources
 - PDC bits provide improvements that are necessary to access EGS resources
- PDC bits will prove benefit when coupled with capable rig
 - Backed by significant R&D
 - Drilling comparable rocks/depths
- Demonstration project has validated PDC technology for geothermal drilling
- Phase 2 bit follows in the footsteps of the successful phase 1 bit run at Chocolate Mountain drilling site

Project Management

Timeline:

Planned	Planned	Actual	Current
Start Date	End Date	Start Date	End Date
Apr 2010	Sept 2012	Oct 2010	June 2013

Budget:

Federal Share	Cost Share	Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date	Funding needed to Complete Work
\$1,336,565	\$52,500	\$1,297,203	\$841,092*	\$1,177,887	\$80,000

- Management
 - No well of opportunity found for downhole hammer.
 - Considering purchase new hybrid bit and alternate diameter bits to test in Geothermal
 - Integrates well with Sandia's overall effort to lower drilling cost
 - NOV Downhole heavily involved in phase 2
- Scheduling in NOV Downhole facility delayed phase 2 completion into FY-13