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DECISION ANALYSIS FOR EGS  
Relevance/Impact of Research 

OBJECTIVES 
 
CHALLENGE – How to develop EGS projects that are affected by 
many unknown and variable factors. 
 
Uncertainties, particularly those related to the subsurface, have a 
major effect on cost, time and resources associated with EGS 
development and operations. 
 
A large variety of uncertainties ranging from geological to 
constructional and operational have to be included. 
 
 
 
The research intends to develop tools, which allow one for formally 
assess these uncertainties and include them in expressions of risk. 
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DECISION ANALYSIS FOR EGS  
Relevance/Impact of Research 

INNOVATIVE ASPECTS 
 
Integrated and effective fracture pattern – circulation model considering 
uncertainties. 
 
Well cost-time model considering uncertainties. 
 
Exploration and systems model for EGS. 
 
 
IMPACT 
 
Subsurface part of EGS, which is subject to the greatest uncertainties, 
can be related to time -  and cost risks. 
 
Makes it possible to compare EGS projects on the basis of risk. 
 
All models based on easily accessible software. 
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DECISION ANALYSIS FOR EGS  
Scientific/Technical Approach 

 
Principles of probability theory, decision making under uncertainty and formal 
uncertainty estimation have to be considered. This will allow one to systematically 
compare the wide variety of uncertainties and include them in an integrated 
expression of risk. 
 
Reliance on these basic scientific and methodological principles will ensure the 
rigor of the approach. 
 
Reliance on estimates/tools and models that have been developed at MIT and 
practically applied will ensure the technical feasibility. 
 
For example: 
 
• Fracture pattern – and, eventually, flow/circulation models capture the relevant 

geologic uncertainties. 
• Construction cost/time models can be adapted for geothermal well time/cost 

estimation. 
• Systems model can integrate any set of other models 
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The model development and integration will be approached 
through a set of scientifically defined tasks. 

1. Fracture Pattern Model for EGS 

2. Drill Cost and Time Model Considering Uncertainties 

3. Circulation Model for EGS 

4. Subsurface Time/Cost Model 

5. Exploratory Model for EGS 

6. Systems Model 

 Combine 1-5 and Technology Transfer 

 Enhance Surface Part of Model 

 

Results will be presented in the following order: 

1 and 3 together – then 2. 

DECISION ANALYSIS FOR EGS  
Scientific/Technical Approach 
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DECISION ANALYSIS FOR EGS  
Accomplishments, Results and Progress 

STOCHASTIC FRACTURE PATTERN MODEL - GEOFRAC  

Sousa et al. 2010 

primary process 
Poisson Planes  

secondary process 
Voronoi Tessellation  

             tertiary process  
Translation & Rotation of Polygons  

GEOFRAC’s stochastic processes were implemented and optimized in MATLAB. 
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MATHEMATICS           GEOFRAC PARAMETERS    FRACTURE PROPERTIES  

 

µ d, θ, φ( )= µfθ ,φ θ, φ( )
µ – Poisson plane 
intensity 
fθ,φ(θ,φ) � orientation 
p.d.f. 

Poisson planes 

E[A] = 1/λ 

σΑ=0.529/λ2 

 

λ – Poisson point 
intensity 

Voronoi Tessellation  

P32 =
Af , i

i =1

N

∑
V

P32 – Fracture intensity 

E[A] – Mean fracture 
area 

P32 = µ 

E[A] = 1/λ 

DECISION ANALYSIS FOR EGS  
Accomplishments, Results and Progress 

FRACTURE PATTERN AND CIRCULATION MODEL 
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FLOW-PATH CONTRIBUTING FRACTURES 

FRACTURE APERTURES: deterministic 
and probabilistic modeling of fracture 
aperture. 
“CLEAN” FRACTURES: retaining only 
fractures that contribute to flow paths, i.e., 
those intersecting at least (1) two other 
fractures, or (2) a fracture and a boundary 
of the model.  

DECISION ANALYSIS FOR EGS  
Accomplishments, Results and Progress 

FLOW PATH COMPUTATION 

-20
-10

0

10
20 -10 -8 -6 -4 -2 0 2 4 6 8 10

-2

0

2

4

6

8

10

YX

Z



9 | US DOE Geothermal Office eere.energy.gov 

branch no. 1 

branch no. 2 

branch no. 3 

branch no. 4 

branch no. 5 

Middle point of intersection 
between fractures 
Intersection nodes (between 
branches) 
Initial nodes (injection 
boundary 

Final Nodes (production boundary)  
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Fracture Length 
Idealized Branch 
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Cibich, 2008 

DECISION ANALYSIS FOR EGS  
Accomplishments, Results and Progress 

50m 

Flow between HDR-2a and HDR-1   

100
m 

100
m 

Geofrac Input 

(assumptions): 

  

P32=1 

E[A]=300m2 

h=0.5mm  

Fisher distribution (k=10) 

  

-50-50

50
0

50

Simplified flow network  
(centerline of flow paths) 

APPLICATION TO HIJIORI EGS - JAPAN 

Q(l/s) 

Flow rate histogram 
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DECISION ANALYSIS FOR EGS  
Accomplishments, Results and Progress 

Thermal Circulation Model  
 
Basics  
 - Parallel Plate fluid flow ( Gradient, Roughness)  
   Velocity profile - Reynolds 
   Heat  transfer (solid, fluid) – Biot 
   Time dependence – Fourier 
   Lateral motion – Prandtl 
   Boundary solid/fluid – Nusselt 

Create starting (parent) nodes 

Create nodes Calculate heat transfer 

Create daughter arcs 

Structure of Model  
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DECISION ANALYSIS FOR EGS  
Accomplishments, Results and Progress 

Drill Cost, Time and Cost Model Considering Uncertainties 
 
Develop existing Decision Aids for Tunneling (DAT) to consider for a 
geothermal well: 
- Various drilling, logging, casing stages 
- Component costs and uncertainties (Labor, Material, Equipment) 
- Trouble costs and uncertainties (Fishing, Stuck Drill Pipe, Casing 

Failure) 
- Geologic features and uncertainties (Effect of strength and 

abrasivity on drill time and bit life) 
- Temperature related failures and uncertainties (effects on logging, 

fluid loss and cementing) 
 
Note:  Other parameters can be included. 
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DECISION ANALYSIS FOR EGS  
Accomplishments, Results and Progress 

Drill Cost, Time and Cost Model Including Uncertainties 
Example application to Sandia (Polsky et al., 2008) Case 

Sandia Well Network 
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DECISION ANALYSIS FOR EGS  
Accomplishments, Results and Progress 

Activity Network for the Surface Drilling 
Method (DAT Screenshot).  

Cost-Time Scattergram for Combined 
Parametric Study.  1000 construction 
simulations were performed, taking into 
account component cost uncertainty, trouble 
events, geological variation, and drilling fluid 
usage rates.  
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DECISION ANALYSIS FOR EGS  
SUMMARY 

SUMMARY OF MAJOR ACHIEVEMENTS 
 
Stochastic Fracture Pattern Model 
 
Circulation (Flow and Heat Exchange) Model 
 
Well Cost/Time Model 
 
 All the above have been validated. 
 All the above consider uncertainties. 
 All the above are easily useable (Matlab or otherwise available software). 
 
The final steps – exploration and systems model have been started based on the 
above. 
 
It is thus possible to say that significant impact on the DoE Geothermal Energy 
Office’s mission and goals has been achieved through: 
 
Decision Making Tools for Assessing, Analyzing and eventually Reducing the 
Time - and Cost Risk of the Subsurface Part of EGS.  
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Timeline: 
 
 
 
Budget: 

 
 

 
• Funds used to support: 

- Postdoctoral Associates, Graduate Research Assistants, Undergraduate 
Research Assistants, PI 

- These participants worked in close day-to-day interaction 
• Interaction with other research at MIT 

- Close interaction with EGS mechanics oriented research 
• Interaction with Industry: 

- Contacts made to get data. 
 
 

Project Management 

Federal Share Cost Share Planned 
Expenses to 

Date 

Actual 
Expenses to 

Date 

Value of  
Work Completed 

to Date 

Funding  
needed to  

Complete Work 

549,148   54,487 ~480,000  480,000  SAME  ~120,000  

 Planned   
Start Date 

Planned 
 End Date 

Actual  
Start Date 

Current  
End Date 

12/29/2009  01/31/2014  02/01/2010  01/31/2014  
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