

Estimation and Analysis of Life Cycle Costs of Baseline EGS

May 18, 2010

Uday Turaga
ADI ANALYTICS LLC

Analysis, Data System and Education

This presentation does not contain any proprietary confldentiaper Genetic actions are strictly information.

Project overview

Timeline

Start date: January 8, 2010
 End date: January 7, 2012
 10% Funds release date: March 31, 2010
 Percent complete: Just initiated

"Soft" kick-off occurred in March 2010

Final start and end dates will be defined after contract is signed

Budget

■ Total funding: \$1,672,550 ■ DOE share: \$1,335,727 ■ Awardee share: \$336,823

• Funding in FY09: \$0

• Funding for FY10: \$854,905 (approximate, pending approval, includes cost share)

Barriers

- Lack of robust datasets and comprehensive models for decision making (Barriers X and Y)
- Limited insight into interactions with electricity markets for long-term EGS applications (Barrier T)
- Poorly understood infrastructure barriers for EGS development (Barrier V)
- Inadequate clarity and articulation of environmental, economic, and security benefits (Barrier W)
- Lack of understanding of applicable current policies and impacts (Barrier U)
- Lack of coordination and integration of program elements (Barrier S)

Partners

- Pennsylvania State University
- Scitech Patent Art Services Inc

Our 6 objectives will be achieved with a well- ENERGY Energy Efficiency & Renewable Energy defined work plan and set of activities ...

Assess costs and drivers by market

Evaluate market, supply-demand economics

Estimate impact of innovation based on patent analytics

Explore cost impacts of new innovations Leverage findings for outreach, R&D, and policy needs

 Review paper and patent literature

penetration

- Interview leading experts, vendors, and engineering firms
- Estimate and validate capital costs and cost drivers
- Model component impacts on LCOE

- Identify major technology type, dominant regions, and leading vendors for each cost component
- Model supply and demand curves for each component
- Evaluate supply chain impacts on costs and resulting LCOE impacts

- Inventory and characterize patents data
- Compare EGS technology areas with intense patenting activity
- Conduct similar patent analytics for analogues
- Develop learning curves and technology evolution forecasts

- Identify synergistic technology and process options
- Develop models to evaluate such emerging options
- Analyze regulatory outlook for support of novel options
- Evaluate cost implications associated with emerging options

- Distill findings and categorize by relevance to type of stakeholder
- Collaborate with relevant partners to facilitate student education
- Identify R&D and policy implications
- Schedule and organize outreach activities

6

Project management and reporting

- Provide reports and other deliverables in accordance with the Federal Assistance Reporting Checklist
- Lead workshops and make presentations to disseminate and facilitate utilization of project output and findings

... Resulting in outcomes that will help understand and reduce EGS costs

Assess costs and drivers by market penetration

Evaluate market. supply-demand

economics

Estimate impact of innovation based on patent analytics

Explore cost impacts of new innovations

Leverage findings and policy needs

- Identification of most expensive components
- Impact of each component on **LCOE**
- Comparison of LCOE with coal and natural gas
- Identification of component-wise cost reduction targets for parity with coal and gas

- Assessment of market economics for potential new entrants
- Identification of supply chain issues and resulting cost reduction opportunities including LCOE impact
- Forecasts of technology evolution and learning curves
- Impact of learning curves on costs
- Description of the technology state through patent analytics
- Identification of technology gaps and corresponding R&D needs
- Assessment of a synergistic IGCC-EGS configuration including CO2 capture and use in supercritical form for FGS
- Identification of economic. environmental. and efficiency benefits of IGCC-**EGS** configurations

for outreach, R&D,

Development of

students and professionals Dissemination of technology gaps

and R&D needs

capabilities in

skills and

Articulation of policy and investment incentives

Project's Major Impacts

- A clear understanding of the current cost structure and ...
- ... Its dependence on markets
- The benefits of innovation
- The impact of synergistic process configurations, and ...
- Widespread dissemination of the findings for use by the geothermal community

A hypothesis-based, lifecycle approach will guide the methods used in this project

Expert elicitation will help us tap cuttingedge insights systematically and rigorously

Researchers

Vendors

Project Developers

Investors

Engineering Firms

Cost Estimate Distributions

Data Validation

New Insights

Project Impacts of Expert Elicitation

- Access to cutting-edge cost estimates from a wide variety of stakeholders
- Insight into cost and performance uncertainties of emerging technologies
- Profiles of risks and their analysis for impacts on key project metrics
- Codification of tacit expert knowledge for various uses
- Validation and triangulation of project assumptions and data from multiple sources

Our expertise in patent analytics will help us **ENERGY** understand major trends, ...

Number of Patents by Country and Year

Number of Patents on Supercritical CO₂

... Generate innovation maps to identify cost ENERGY Energy Energy Energy Renewable Energy and performance implications, and ...

Key Areas of Patent Activity in Geothermal Energy

... Forecast EGS learning curves using case studies of previous energy technologies

Conceptual Model for Estimating Learning Curves

Cost Reduction Due to Learning by Research

Source: T. Jamasb, The Energy Journal, 28 (3) 2007

We will use milestones and decision criteria to focus on the most value-added objectives

Project Milestones							
	Task / Milestone	Period					
Task 1	Assess costs and drivers by market penetration						
	Identification of most expensive components	1Q					
	Impact of each component on LCOE	2Q					
	Comparison of LCOE with coal and natural gas	3Q					
	Identification of component-wise cost reduction targets for parity with coal and gas	4Q					
Task 2	Evaluate market, supply-demand economics						
	Assessment of market economics for potential new entrants	3Q					
	Identification of supply chain issues and resulting cost reduction opportunities	4Q					
Task 3	Estimate impact of innovation based on patent analytics						
	Description of the technology state through patent analytics	2Q					
	Forecasts of technology evolution and learning curves	4Q					
	Impact of learning curves on costs	6Q					
	Identification of technology gaps and corresponding R&D needs	8Q					
Task 4	Explore cost impacts of new innovations						
	Assessment of a synergistic IGCC-EGS config. incl. CO2 capture and use in supercritical E	4Q					
	Identification of econ., environ., and efficiency benefits of IGCC-EGS configs.	6Q					
Task 5	Leverage findings for outreach, R&D, and policy needs						
	Distill findings and categorize by relevance to type of stakeholder	6Q					
	Collaborate with relevant partners to facilitate student education	On-going					
	Identify R&D and policy implications	7Q					
	Schedule and organize outreach activities	On-going					

Project Management Decision Criteria									
After 12 months:After every milestone:	No-go if experts and patent, cost, and other data are not available Review and adjust hypotheses as required to reflect new data, findings								

The project has just begun and will be executed per the identified work plan

Progress to Date

- Initiated project through a "soft" kick-off in March 2010 after 10% of the funds were authorized for expenditure pending full approval
- Initiated identification of secondary research and experts for interviews
- Attended an energy conference organized in Houston, TX
- Conducted a few expert interviews on market, technology, and financing
- Completed and submitted a number of reports in response to U.S. DOE

Path Forward

- Continue the execution of Tasks 1 and 2
 - Assess costs and drivers by market penetration
 - Evaluate market, supply-demand economics

Our proven credentials in analyzing energy technologies and economics ...

Our Staff has Proven Expertise ...

Strategy setting skills for growth, cost optimization, and organizational excellence

Operations experience, e.g., plant start-ups, capital projects, field studies, and Six Sigma

Commercial energy value chain expertise with 100+ years of total staff experience

... Gained in Leading Organizations...

... and Recognized by Major Awards

... Coupled with established partners and vendors ...

- Leading research university with \$765 million in 2009 funding
- Project collaborator, Department of Energy and Mineral Engineering, is a leading interdisciplinary energy research and education provider
- Established leaders in education, geothermal energy, and power plant technology will collaborate with the prime contractor on this project

- Leading provider of patent research and analytics services
- Serves a number of Fortune 500 clients in multiple industry segments
- Qualified and talented staff with experience in multiple domains

... Will help us deliver value on schedule and ENERGY Energy Energy Energy Renewable Energy per our project management plan

Schedule											
		Year 1				Year 2					
		1Q	2Q	3Q	4Q	5Q	6Q	7Q	8Q		
Task 1	Assess costs and drivers by market penetration										
Task 2	Evaluate market, supply-demand economics										
Task 3	Estimate impact of innovation based on patent analytics										
Task 4	Explore cost impacts of new innovations										
Task 5	Leverage findings for outreach, R&D, and policy needs										
Task 6	Project management and reporting										

Project Management

- Review progress of project and deliverables against schedule with team each month
- Review progress of project and deliverables against schedule with partners every quarter
- Review and adjust hypotheses as required after completion of each milestone with the team
- Provide reports and deliverables in accordance with the FAR Checklist
- Organize informal advisory panel to review quality and progress of deliverables

FUTURE DIRECTIONS

We will bring insights on market, innovation, ENERGY Energy Efficiency & and policy measures to reduce EGS costs ...

- Deliver a clear understanding of the current EGS cost structure
- Describe the cost structure's dependence on markets
- Forecast the benefits of innovation on EGS cost reduction
- Explore the impact of synergistic process configurations
- Disseminate widely project findings for use by the geothermal community

SUMMARY

... With our energy expertise, clear approach, ENERGY Energy Energy Energy Renewable Energy rigorous tools, and competent partners

- Our project will facilitate insights into the cost of EGS and how it can be reduced through market, innovation, and policy measures
- We have a well-defined approach that will be executed using a set of scientifically rigorous methodological tools
- In addition, we and our partners bring extensive experience in the analysis of energy technologies and economics
- Finally, the project has just started and will initially focus on understanding the first two tasks:
 - Assess costs and drivers by market penetration
 - Evaluate market, supply-demand economics