

#### A Renewable

Energy Future: Innovation and Beyond

Dr. Dan E. Arvizu

Director, National Renewable Energy Laboratory





### **Energy Sector**

# TRANSFORMATION IS REQUIRED

# National Energy Imperatives

#### Security

Reducing dependence on foreign sources

#### **Economy**

Stimulating clean-energy companies and job growth

#### **Environment**

Protecting resources and reducing global warming

### A Profound Transformation is Required

### Today's Energy System

# Sustainable Energy System

#### **TRANSFORMATION**

- Dependent on non-domestic sources
- Subject to price volatility
- Increasingly vulnerable energy delivery systems
- 2/3 of source energy is wasted
- Significant carbon emissions
- Role of electricity increasing

- Carbon neutral
- Efficient
- Diverse supply options
- Sustainable use of natural resources
- Creates economic development
- Accessible, affordable and secure

### **Energy Sector Challenges**



R&D Investment Drives Innovation



Capital Intensive with Long Life Cycles





# Investment Pipeline









### Innovation, Integration, & Adoption

**Reducing Investment Risk** 

 Enable basic and applied clean energy technology innovation

- Accelerate technology market introduction and adoption
- Integrate technology at scale
- Encourage collaboration in unique research and testing "partnering" facilities
- Provide analysis and expertise to inform decisions



How do we get there?

### IT WILL TAKE INNOVATION

# NCPV Conversion Technology R&D



# Conversion Technologies

#### **Strategically Focused Portfolio** PV Manufacturing Consortium Company A Company B **Equipment Maker Module Manufacturer PDIL** Industry (Others) Process Proof Prototype & Pilot Scale Production System Development & Manufacturing DOE SETP AOP Universities F-PACE Foundational Program to Advance Cell Efficiency

#### **SunShot Targets:**

| CIGS/CZTS                            |                | Cell Efficiency | Commercial<br>Module Efficiency | Cost                       | Reliability                                     |
|--------------------------------------|----------------|-----------------|---------------------------------|----------------------------|-------------------------------------------------|
|                                      | Current Status | 20.3%           | 11-13%                          | <\$1.50/Watt<br>(estimate) | 0.5-5% annual<br>degradation in pilot<br>arrays |
| SunShot<br>U.S. Department of Energy | 2015 Targets   | 23%             | 13-16%                          | <\$0.70/Watt               | <1% annual degradation                          |

| C  | dT | e  |          |    |
|----|----|----|----------|----|
|    | // |    | 111      | 11 |
| Su | n  | Sł | //<br>ገር | ot |

|                | Cell Efficiency | Module Efficiency | Cost        | Module Reliability |
|----------------|-----------------|-------------------|-------------|--------------------|
| Current Status | 17.3%           | 11-12%            | 0.75-0.80/W | 0.6-1.2 %/year     |
| 2015 Targets   | 19-20%          | 14.0%             | 0.60/W      | 0.5-1.0 %/year     |

degradation

#### Wafer-Si



|                | Cell Efficiency | Module Efficiency | Cost    |
|----------------|-----------------|-------------------|---------|
| Current Status | 25%             | 14-20%            | \$1.0/W |
| 2015 Targets   | 27%             | 16-23%            | \$0.6/W |

#### **SunShot Targets:**

#### Film-Si



|                | Cell<br>Efficiency | Module<br>Efficiency | Cost          | Comment                                     |
|----------------|--------------------|----------------------|---------------|---------------------------------------------|
| Current Status | 12.7%              | 7-11%                | \$0.70-1.50/W | a-Si/nc-Si tandem or triple junction        |
| 2015 Targets   | 15%                | 12%                  | \$0.6/W       | likely early commercialization of film c-Si |

#### III-V



|                | Multijunction Cell Efficiency | Module Efficiency | Cost     |
|----------------|-------------------------------|-------------------|----------|
| Current Status | 41.6%-lab<br>40%-commercial   | 28%               | >30¢/kWh |
| 2015 Targets   | 48%-lab<br>44%-commercial     | 30%-36%           | <7¢/kWh  |

#### OPV



|                | Cell Efficiency | Module Efficiency | Cost   | Reliability                   |
|----------------|-----------------|-------------------|--------|-------------------------------|
| Current Status | 10.6%           | 5.2%              | Ś      | Stability beyond 10,000 hours |
| 2015 Targets   | >13.5%          | 10% 100 cm²       | <1\$/W | >30,000 hours                 |

# Needs/Challenges

#### CIGS/CZTS

- Higher photovoltage
- Higher photocurrent
- · Rapid growth rate
- Minimize electrical defects in PV quality

#### CdTe

- Minority carrier lifetime
- Grain boundary structure and charge transport
- Correlation between TRPL lifetime and device performance
- Synthesize an effective set of samples

#### Wafer-Si

- Multijunction device modeling
- Engineered (tailored material) for middle and top cell
- High quality middle Si cell around 1.5 eV
- High performance and understand the tunneling junction
- Surface and bulk passivation of c-Si
- Improved light management for component cell









1.8 eV top Si cell 1.5 eV Middle Si cell 1.1 eV c-Si cell

# Needs/Challenges

#### Film-Si

- · Improved thin-film silicon cells at high growth rate
- Develop low-cost oriented crystal seeds for film c-Si
- Improve epitaxy quality and rates at low T
- Develop light-trapping for thin c-Si

#### III-V

- Next-generation cells to increase power/lower LCOE
- Deeper reliability heritage for cells and systems
- Design cells for operation in real-time systems

#### **OPV**

- Lower band gap absorbers with appropriate HOMO/LUMO
- Stability >30,000 hours (intrinsic and extrinsic)
- Scalability of lab scale efficiencies to >100 cm<sup>2</sup> modules
- International coordination and standardization





Ga<sub>.5</sub>In<sub>.5</sub>P 1.85 eV

GaAs 1.42 eV

grade

Ga<sub>.7</sub>In<sub>.3</sub>As 1.0 eV

grade

Ga<sub>.45</sub>In<sub>.55</sub>As 0.7 eV

handle



# innovati@n



### **Spectrum of Innovation**

#### From Science through Deployment

- Comprehensive approach to innovation
- Collaboration with private industry
- Connects science to the marketplace
- Delivers market-relevant technologies and competitive clean-energy products

# innovation Impact



















Solar for Life<sup>™</sup>































**Xcel** Energy<sup>∞</sup>



































DaimlerChrysler







#### **Transformation**

# INTEGRATION IS KEY

# Transforming Our Electricity Infrastructure

**Current Energy Systems** 

**Future Energy Systems** 



### **Requires Integration Across All Scales**



**Complexity** 

### **Energy Systems Integration**

#### **Key Challenges**

- Increase overall energy system efficiency
- Integrating new technologies in existing infrastructure
- Engagement of consumers in energy use increases complexity but also increases system flexibility

#### Gaps in the ability to address these questions

- Difficult to test large-scale deployments of new technologies
- Difficult to obtain information on actual performance
- Energy systems cuts across a variety of pathways so it requires an interdisciplinary approach

#### Opportunities for science-based approach

- Linking hardware and control testing to system simulation environment
- Using actual operations data to develop evidence based solutions mining massive new data sets
- Complex systems analysis and control scalable synergistic operations of large interconnected systems

# NREL Energy Systems Integration Facility

Solving the challenges of large-scale integration of clean energy technologies onto the energy systems infrastructure



### ESIF – A Unique Technology User Facility

- A unique national asset for energy systems integration R&D, testing, and analysis
- Designed for conducting research and development of renewable energy technologies in a systems context at deployment scale



80% Renewable Electricity

# **TRANSFORMED BY 2050**

### Renewable Electricity Futures Motivation





- RE is a low carbon, low air pollutant, low fuel use, low water use, domestic, sustainable electricity source.
- To what extent can renewable energy technologies commercially available today meet the U.S. electricity demand over the next several decades?

# Renewable Electricity Futures Study



U.S. DOE-sponsored collaboration with over 110 contributors from about 35 organizations including national laboratories, industry, universities, and NGOs

# State of the Art Electric System Models



- Unprecedented geographic and time resolution for the contiguous United States
- Over two dozen scenarios of RE generation focused on 2050

# Abundant Renewable Energy Resources

#### Biopower ~100 GW

- Stand-alone
- Cofired with coal

### Solar CSP ~37,000 GW

- Trough With thermal
- Tower storage

#### Geothermal ~36 GW

- Hydrothermal





#### Hydropower ~200 GW

- Run-of-river

# Solar PV ~80,000 GW (rooftop PV ~700 GW)

- Residential
- Commercial
- Utility-scale

#### Wind ~10,000 GW

- Onshore
- Offshore fixedbottom

Darker Colors = Higher Resource

Geographic location, technical resource potential, and output characteristics are unique to each RE generation technology.

### A Transformation of the U.S. Electricity System



RE generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of total U.S. electricity generation in 2050 while meeting electricity demand on an hourly basis in every region of the country



A future U.S. electricity system that is largely powered by renewable sources is possible, and further work is warranted to investigate this clean generation pathway.



### To achieve a clean energy vision, we must...

- Invest in innovationInvent the future we desire
  - Improve access to capital
  - Partner on a global scale

