

FLORIDA SOLAR ENERGY CENTER°

Creating Energy Independence

FLORIDA SOLAR ENERGY CENTER°

Creating Energy Independence

Side by Side Testing of Water Heating Systems

Residential Energy Efficiency Stakeholder Meeting Austin, Texas

March 1st, 2012

Carlos J. Colon carlos@fsec.ucf.edu

Hot Water Systems (HWS) Laboratory FSEC Cocoa, Florida

2009 - Present (Currently in third testing rotation)

Underground Circulation Loop

Solar Systems were evaluated under long plumbing conditions

- Solar circulation Loop 140+ feet of ½" copper tubing
- Encased in PVC tubing with R-2.4 insulation
- ICS to 50 gallon storage tank path need to overcome 70 ft travel.

Electric and Natural Gas Hot Water Baseline Systems

2009 – 2010 Testing rotation (Phase I)

Hot Water Systems (HWS) Laboratory Improved HW systems

2010 – 2011 Testing Rotation (Phase II)

Review of Energy Factor Test Conditions

- 24 hour test, six draws totaling 64.3 gal/day
- Thermostat set to 135°F (+/- 5°F)
- Ambient test conditions at 67°F
- Inlet water temperature of 58°F

 Hot water draws at a rate of 3 gallons per minute (3 gpm)

HWS Lab Testing Conditions

- All systems thermostat set for hot water delivery of 120 °F
 - Solar systems utilize Mixing Valve
- Flow rate of 1.5 gallons per minute (gpm)
- Real mains inlet city water temperatures (Cocoa, FL)
- Ambient conditions in shed can exceed typical garage temperatures (six storage tanks together)
- Programmed Hot water draw schedules alternated every two weeks (Ashrae 90. 2, NREL/BA)

Two Hot Water Draws Compared

ASHRAE 90.2 Remains unchanged all year 64.3 gallons per day

Origins of NREL/BA Draw Schedule

- NREL Building America Research Benchmark guidance (Paper by Hendron, Burch) http://www.nrel.gov/docs/fy08osti/40874.pdf
- Created by a software tool (DHW Calc) developed by the Kassel University, Germany
- Adjusted monthly based on data obtained from a field study (1986) of 16 sites monitored throughout Florida - 3.5 person household avg.

Monthly Profile of DHW Water and Electrical Use 17 Electric Resistance Water Heaters FL 1982-1983

Weighted Average Inlet Water Temperatures at HWS Lab (Cocoa, FL)

NREL/BA Draw Profile

January	67.2		
February	66.4		
March	66.4		
April	63.8		
May	54.6		
June	48.4		
July	42.2		
August	44		
September	44.9		
October	47.5		
November	53.7		
December	59		

Combined Draw Performance

Average Daily Electric Energy Use

Average Hot Water Draw Temperatures

	All Draws (°F)	NREL/BA (°F)
Electric 50 gal.	119.4	118.4
FP 80 Diff. control	118.2	116.4
ICS+ 50 gal. WH *	121.7	119.3
FP 80 gal. PV Pump	122.4	122.1
NG 40 gal.	123.7	122.2
Tankless NG	116.6	117.0
HPWH	118.1	116.9

^{*} Hard to achieve on a Std. electric 50 gal. w/single upper element. Seasonal thermostat adjustment was required

FSEC

Standard Electric vs HPWH Outlet temperatures compared

Std. Electric 50- Gallon Water Heater Efficiency

50-Gallon Heat Pump Water Heater Efficiency

50-Gallon Heat Pump Water Condensate

Average = 3.2 pints/day

Solar Flat Plate 40/80 gal (Diff.-controlled AC Pump) Efficiency

Efficiencies Compared under NREL/BA Draw Schedule

Average Month Electric Consumption under NREL/BA Draw Profile

Std. Electric vs HPWH 50 Gallon

Breaking the Recommended Rules on Appliance Installation

Current Case Scenario:

700+ units - HPWH Confined in >100 ft³ Quasi-vent Closet

Laboratory Test Results:

14.3% Electric increase

12.8 % COP reduction

0.93 °F Hot Water outlet temperature reduction

Energy Savings Electric Systems

2009-2010 Testing Rotation

	ASHRAE 90.2	NREL/BA
Solar Flat Plate Differential w/80 gal. tank	62.7%	61.2%
ICS w /50 gal. tank	39.2%	26.3%
Solar Flat Plate PV pumped w/80 gal. tank	60.7%	59.4%
Tankless Electric	6.9%	5.1%

2010 -2011 Testing Rotation

	ASHRAE 90.2	NREL/BA		
Solar Flat Plate Differential				
w/80 gal. tank	55.0%	54.4%		
ICS w /50 gal. tank	34.6%	36.6%		
Solar Flat Plate PV pumped				
w/80 gal. tank	60.4%	59.4%		
HPWH	61.4%	66.8%		

Natural Gas (NG) Tank vs Tankless

Tankless vs Std. 40 Gallon Natural Gas

2009 -2010

Energy Savings of Tankless Natural Gas Water Heater

	ASHRAE 90.2	NREL/BA	
Tankless Natural Gas	23.5%	26.9%	

Time of Day Demand under NREL/BA Draw Schedule

Peak Demand Reduction

		schedule	Winter Season (Dec. 2010 – Feb 2011)		Summer Season	
	(Sep. 2010-	Aug 2011)			(June – Aug. 2011)	
	Morning	Night	Morning	Night	Morning	Night
	8:00 AM	9:00 PM	8:00 AM	9:00 PM	8:00 AM	9:00 PM
Diff.	61.5%	73.6%	48.3%	65.8%	89.8%	90.4%
Solar						
ICS/50 gal	47.1%	25.9%	23.0%	20.0%	80.1%	50.7%
Diff. PV	68.0%	88.0%	42.1%	83.2%	97.1%	100%
HPWH	75.1%	76.3%	76.3%	82.0%	81.8%	75.6%

Time of Day Demand under NREL/BA schedule

Summer Electric Demand

Winter Electric Demand

Site and Source Demand

Site Energy Demand

Source Energy Demand

Multiplier Factors: Me = 3.365, Mg = 1.092

Gaps and Barriers in Residential Water Heating Appliances

- This presentation addresses the difference between ratings (EF) and operating efficiencies (FL region) for Residential water heating systems
- Storage vs Tankless difference on immediate delivery of hot water at draw events.
- Data reveals lower than expected operating efficiency of natural gas tankless at 1.5 gpm draw.
- Higher efficiency comes at a premium (\$)cost
- Comfort: HPWH recovery might be an issue on high dynamic draws (Winter)

Tankless Vinegar Flush

Flush Debris: No efficiency Improvement detected

Anode rod replaced on solar thermal 3 Years

Gaps and Barriers in Residential Water Heating Appliances

- Results of testing/evaluation brings up the subject of residential energy modeling
 - Is EF best metric to use as input parameter?
- Maintenance & Reliability
- Solar Acceptance & Installation Cost
- With improvement and availability of HPWH (EF>1.5)
 - Gradual phase out of resistance element?
- New Energy Factors for 2015 How will they fare under field and testing evaluations?

Moving Forward to Investigate and Demonstrate Higher Efficiencies

www.infomonitors.com/HWS

FLORIDA SOLAR ENERGY CENTER°

Creating Energy Independence

The End We hope you have enjoyed the highlights/results of our work Thank You!

Questions / Discussion

