

Residential Humidity Control Strategies

Armin Rudd

Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas

Humidity control goals

- Comfort, and Indoor Air Quality
 - □ Control indoor humidity year-around, just like we do temperature
- Durability and customer satisfaction
 - □ Reduce builder risk and warranty/service costs

Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas

ENERGY Energy Efficiency & AMERICAN

Humidity control challenges

- In humid cooling climates, there will always be times of the year when there is little sensible cooling load to create thermostat demand but humidity remains high
 - Cooling systems that modify fan speed and temperature set point based on humidity can help but <u>are still limited</u> in how much they can over-cool
- More energy efficient homes have less sensible heat gain to drive thermostat demand but latent gain remains mostly the same
 - · Low heat gain windows
 - Ducts in conditioned space
 - More, and better-installed, insulation
 - Less heat gain from appliances and lighting

Residential Energy Efficiency Stakeholder Meeting 2/29 – 3/2/2012 Austin, Texas

Humidity control challenges, cont.

- More energy efficient cooling equipment often has a higher evaporator coil temperature yielding less moisture removal
 - Larger evaporator coil by manufacturer design, or upsized air handler unit or airflow by installer choice
- Conventional over-sizing to cover for lack of confidence in building enclosure or conditioning system performance causes short-cycling yielding less moisture removal

Residential Energy Efficiency Stakeholder Meeting 2/29 – 3/2/2012 Austin, Texas

ENERGY Energy Efficiency Renewable Energy

System engineering trade-offs

Start with high-performance building enclosure

- Improves the more permanent features of a home which has longer-term sustainability benefits
 - Bulk water management, low loss/gain glass, controlled air change, ducts inside conditioned space, pressure balancing
- □ Allows for reduced cooling system size
 - Helps pay for the enclosure improvements
 - More compact duct system lowers cost and helps get the ducts inside
- Makes overall building performance more predictable
 - Gives confidence for right-sizing equipment
 - No short-cycling: Better moisture removal, Higher average efficiency, Better spatial mixing
 - Controlled ventilation instead of random infiltration
- Results in decreased energy consumption along with increased occupant comfort

Residential Energy Efficiency Stakeholder Meeting 2/29 – 3/2/2012 Austin, Texas

ENERGY Energy Efficiency &

Conventional Cooling System Dehumidification Enhancements AHU Dehumidification Enhancement Features Carrier¹ Lennox Goodman² ICP³ Nordyne⁴ AVPTC CBX32MV Variable speed airflow FV4 FVM B4VM Selectable cooling/heat pump/heating fan speed/airflow Selectable airflow Adjustment (+/- %) Selectable constant fan speed/airflow communicating tsta Selectable fan delav after cooling can be zero Dehum fan profile with lower airflow for a time 82% for first 7.5 min 75% for first 10 min Receives Dehum signal from tstat or dehumidistat Dehum logic is 0 Vac on humidity rise Dehum logic is 24 Vac on humidity rise Lower cooling airflow if RH is above RH setpoint Extended cooling after thermostat setpoint reached 80% 60% to 70% 80% Intermittent super-low cfm/ton during extended cooling 50%, 10 min on/off Carrier includes Bryant Goodman includes Amana ³ ICP includes Comfortmaker, Tempstar, Heil, Arcocaire, Day&Night, Keep Rite ⁴ Nordyne includes Frigidaire, Gibson, Westinghouse, Tappan, Kelvinator, Philco, Nutone Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas ENERGY Energy Efficiency & AMERICA STATES OF Energy Efficiency & U.S. Department of Energy

Dehumidifier and ventilation duct in interior mechanical closet with louvered door

Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas

ENERGY Energy Efficiency & Control of Energy Energy & Control of Energy & Control of Energy

Ducted dehumidifier in conditioned space with living space control

Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas

ENERGY Energy Efficiency & Autology & Renewable Energy

What about making the existing cooling or heat pump equipment also do the supplemental dehumidification?

Goals:

- □ Provide year-around relative humidity control in highperformance (low-sensible gain) houses
- Without over-cooling the space
- At lower installed cost than the same efficiency heating and cooling system with an additional high efficiency dehumidifier
- By making standard DX cooling equipment switchable between normal cooling and dehumidification-only using condenser reheat

Residential Energy Efficiency Stakeholder Meeting 2/29 – 3/2/2012 Austin, Texas

Gaps, Barriers, and Future Work

- Further cost reduction of dehumidifiers and central dehumidifying equipment through design and manufacturing optimization
- Better understanding of actual dehumidification design load, including moisture storage effects and occupant behavior
- More laboratory testing of dehumidifiers to establish better design criteria and performance maps for simulation models
- More laboratory and field testing of central dehumidifying equipment to establish better design criteria and performance maps for simulation models

Residential Energy Efficiency Stakeholder Meeting 2/29 – 3/2/2012 Austin, Texas

Gaps, Barriers, and Future Work, cont.

- Work with industry (AHRI) on new rating standard for dehumidifiers and central dehumidifying equipment to aid in proper humidity control design and equipment selection
- More buy-in from cooling equipment manufacturers regarding the need for a focus on dehumidification performance
- Better understanding of humidity control impacts of sensible heat gain reduction in <u>mixed-humid</u> climates
- All BA teams working in warm-humid and mixed-humid climates should be routinely collecting temperature and relative humidity data in several indoor locations

Residential Energy Efficiency Stakeholder Meeting 2/29 – 3/2/2012 Austin, Texas

U.S. GEPARTMENT OF Energy Efficiency &

Performance map data need	s at each	test condi	tion and a	at each ec	uipment	control st	ate			
For dehumidifer equipment v	vith both	indoor an	d outdoor	heat tran	sfer com	ponents				
					Indoor	Sensible	Latent	Moisture		Moisture
		Outdoor	Inlet	Outlet	Wet-coil	Cooling	Cooling	Removal	Total	Removal
		T/RH/Tdp	T/RH/Tdp	T/RH/Tdp	Airflow	Capacity ¹	Capacity	Capacity	Power	Efficiency
		(F/%/F)	(F/%/F)	(F/%/F)	(cfm)	(Btu/h)	(Btu/h)	(L/h)	(kW)	(L/kW-h)
_										
Summer, full sensible load ³	Test 1a	95/58/78	80/60/65							
	Test 1b		78/55/61							
	Test 1c		75/50/55							
Summer, part sensible load ³	Test 2a	80/85/75	80/60/65							
	Test 2b	""	78/55/61							
	Test 2c		75/50/55							
	1001 20		70,00,00							
Spring-Fall, part sensible load ³	Test 3a	75/85/70	78/60/63							
	Test 3b		78/55/61							
	Test 3c		75/50/55							
_										
Winter, latent load only ³		65/90/62	72/60/57							
	Test 4b		70/52/52							
	Test 4c		68/45/46	l						
						d from inle				
					A Energy	Factor for o	dehumidifie	ers		
	3 All test	s with stea	dy wet coi	l						
		Air entering				indoor unit		Comme	ent	
		ulb (F) RH9		() .)		%) dewpoin				
ARI ratings (67 indoor wetbi	ılb)	95 4	Ю	67		51		F saturate	d suction	n
AHAM dehumidifier rating					80	60	65			