

Technical Barriers and Reasonable Price Solutions to Contractor Acceptance in the Field

Ben Schoenbauer, Research Engineer, Center for Energy and Environment February 22, 2012

Gaps and Barriers in High Efficiency Space and Water Heating

- System Optimization and Improved Installation

What have we achieved so far?

- This presentation will look at laboratory work used to address this gap
- Risks that needed to be managed were a lack of familiarity of contractors and homeowner comfort
- The major benefit of this project is high efficiency space and water heating as well as combustion safety

What is left to achieve?

- The highest priority issue remaining to be solved is to analyze actual installed efficiency and energy savings
- We plan to continue to close this gap by doing a 20 site field monitoring study

What we have achieved so far

- A. Increased Contractor knowledge
- B. Performed laboratory testing to determine optimum performance and identify potential areas for equipment improvement
- C. Work with contractors to implement knowledge improving performance and reducing costs

What is a Dual Integrated (Combi) System and Why Should We Use it?

- + Provides space heating and water heating from a single heating plant water heater or boiler
- + Two high efficiency heaters in one package
 - potentially cheaper
 - Simpler, less maintenance
- + Sealed combustion (Direct vent systems)
 - Eliminates combustion safety issues
- + Further reduction in air infiltration
 - Removal of make up air inlets
 - Sealing chimneys

Storage water heater based system

Installation and Sizing

Gaps:

- + Some contractor's had little experience
- + System schematics often developed on site
- + Little or no sizing information provided
- + System components came from several manufacturers
- + Manufacturer's settings may not lead to best performance
- + Decided to design and optimize systems in a laboratory
- + Could then provide contractors with more detail installation guidelines

Page 7

-- Lab work

- + Idle losses
- + Steady state efficiency
- + Air handler capacity testing
- + Full system tests

Energy Efficiency & AMERIC Renewable Energy

→ Boiler 1 – Combi boiler with 12 gal DHW tank

Air Handler Performance Mapping

- + Minimum supply air temperature (110 F) for comfort dictates minimum flow rate
- + Maximum return water temperature (105 F) dictates maximum flow rate
- + Coil capacity is bounded by these flow rates

Air Handler Performance Mapping

Page 13

At CFM=1100, Supply Water =140F, Return Air = 70F

Air Handler Performance Mapping

Low Use Transient Performance

Low Use Transient Performance

Low Use Transient Performance

What Gaps and Barriers Remain

- A. Examination of actual performance data in real homes
- B. Can contractor familiarity drive prices down?

What is next

- + 300 installs in Minnesota by end of 2012
 - + Cost and Utility bill analysis on all 300 sites
 - + Detailed pre/post monitoring on 20 sites

Existing Equipment

DIA Installation

•••

Field Monitoring Installation

PRELIMINARY: Energy Consumption

** PRELIMINARY: Comparasion to a 93%

Questions?

Ben Schoenbauer bschoenbauer@mncee.org