

Lois B. Arena Steven Winter Associates, Inc.

Why Research Hydronic Heating?

Reasons to Research Boilers

- Approx. 14 million homes (11%) in the US are heated with a steam or hot water system
- Almost 70 percent of existing homes were built prior to 1980
- Boilers built prior to 1980 generally have AFUE's of 0.65 or lower
- Energy savings of 20+% are possible by simply replacing older boilers with standard boilers & up to 30% with condensing boilers.
- Optimizing condensing boilers in new and existing homes could mean the difference of 8-10% savings with little to no additional investment.

Overview of Systems Evaluated

Overview of Previous Research

- Previous Research 3 Phases:
 - Monitoring and Evaluation of 6 Existing Homes
 - Bench Top Research from Thomas Butcher at BNL
 - Design, Monitoring & Evaluation of 3 New Homes

Basic System Configuration

Outdoor Reset Curve

Gaps Identified

Technology & Industry Gaps

- Installed efficiency lower than rated efficiency
- Most software tools can't properly model hydronic heating
- Lack of guidance for contractors w/ respect to design, controls and commissioning
- Safety features protecting boilers decrease efficiency

Response time is extremely slow

Critical Parameters Affecting Efficiency

Con -

Primary/secondary loop - contributes to higher than optimal return water temperatures to the boiler

Con - Flow rates are higher than anticipated, contributing to higher than optimal return water temperatures.

Table 1. Summar	v of Space	Heating O	perating	Conditions from	Existing Hon	ne Monitoring
	,		م. ت. ت. ت	,		

							Boiler Curve Settings [°F]						
House	Baseboard Length ft	Boiler Capacity kBtuh	# of Zones #	Flow Rate ¹ gpm	Frequency of Condensing	Outdoor Reset	T _{s,max}	$T_{out,min}$	$T_{out,max}$	$T_{s,min}$			
#1	52	unknown	1	3.1	69%	Υ	180	0	72	95			
#2	38.5	50	2	5.3	59%	Υ	185	5	68	95			
#3	61	80	3	4.8	60%	Υ	180	5	68	95			
#4	32	80	1	3.3	20%	N^2	200	5	68	95			
#5	41	50	2	5.2	14%	Y ³	185	5	68	145			
#6	54	80	2	4.3	16%	N	201	5	68	95			

¹Flow rate recorded through primary loop.

³The minimum boiler supply temperature was set to 145 °F because the toe kick heater in the kitchen would not activate below that.

²The outdoor reset, although installed, is not registering in the controller.

Boiler Efficiency vs. Return Water Temp

Steady state efficiency vs. return water temperature

Reproduced with permission from Thomas Butcher, BNL

Con - Maximum boiler output temperature is typically set to 180°F or higher for both space and domestic hot water heating.

	Frequency of Condensing at Different T _{s,max} (1, 2 & 3 gpm)											
$T_{s,min}$	150			160			170			180		
95	99%	91%	87%	90%	80%	77%	79%	68%	64%	66%	57%	53%
105	99%	87%	83%	86%	72%	67%	71%	58%	54%	56%	47%	44%
110	99%	84%	79%	82%	66%	60%	62%	50%	45%	48%	41%	39%
115	98%	80%	73%	72%	56%	50%	48%	42%	35%	40%	34%	32%
120	97%	70%	60%	66%	45%	40%	43%	34%	24%	32%	25%	23%

Results for bin temperature profile in Ithaca, NY

Any control technique which reduces the return water temperature, including lowering the boiler set point and/or reducing the loop flow rate will significantly improve the achieved efficiency.

- Flow Rates were higher than specified:
 - Contractors don't have standard, simple methods for measuring and/or setting flow rates.
 - Until recently, low flow residential pumps for which the flow can be set, have been difficult to find.

Factors Affecting Response Time

- Recovery from setback
 - Extremely slow in all homes monitored more than 2 hours for a 5 degree setback.
 - Location of outdoor reset sensor is important to system performance
 - Appears to get worse with increasing outdoor temperatures
 - Differential setting can affect recovery time

Factors Affecting Response Time

Factors Affecting Response Time

Improving Efficiency & Response Time

Changes Made in Last Round of Testing

- Proper sizing of boiler mandatory
- Outdoor reset control a must.
- Lower T_{s,max} on reset curve
- Reduce flows to achieve 20° ΔT at design 30% savings in pump energy going from high to low speed.
- Size baseboard for low-flow & T_{s,max} from above oversizing is OK.

Results of Changes Made in Last Round of Testing

- Performance Results:
 - Phase III all condensed over 96% of year in space heating mode
 - Phase I 60-69% in space heating mode
- Estimated Savings (remember: small house)
 - Translates to approximately 3% improvement in efficiency for a Phase III house ≈ \$20/yr
 - 30% savings in pump power ≈ \$10-\$15/yr
 - Extra 20' of baseboard ≈ \$160, payback is ≈ 5 years
- NOTE: w/out outdoor reset, 15-20% condensing.

Continuing Research

Upcoming Research

- 2 New Homes
- Similar construction to first round of research
- Same climate
- Applicability to retrofit applications
- Industry Sanctioned Designs
- Looking at line losses, baseboard piping, boost vs. setback

Upcoming Research – System A

High mass boiler, zone valves, variable speed pump

with tank temperature increasing to 145 °F as outdoor

Upcoming Research – System B

Low mass, indirect tank, adjustable speed pumps on zones – compare performance of primary loop vs. a buffer tank

Recommendations for Improving Response Time & Comfort

- Proper sizing of boiler mandatory
- Raise T_{out,min} on boiler curve slightly
- Proper placement of outdoor reset sensor
- Recommend boost controls or eliminate setback
- If setback is desired, increase length of baseboard to improve response time (will increase efficiency as well)

Questions?

Thank You.

Lois B. Arena

www.swinter.com

