Physics and Statistics of Combustion Safety **Brett C. Singer** VIH. Rapp **Graig Wray** **Environmental Energy Technologies Division Lawrence Berkeley National Laboratory** **Presented to** Building America Stakeholders Meeting March 1-2, 2012 LAWRENCE BERKELEY NATIONAL LABORATORY ### Available draft is draft supplied by the vent system at the flue gas outlet. $$D_a = D_t - \Delta p_{Loss} - D_p + D_b$$ 2008 ASHRAE Handbook – HVAC Systems and Equipment, Chapter 34 # Available draft is draft supplied by the vent system at the flue gas outlet. $$D_a = D_t - \Delta p_{Loss} - D_p$$ $$D_a = D_t - \Delta p_{Loss} - D_p$$ **Burner** Size **Appliance Efficiency** Vent Dimension Weather Vent Location & Material RKELEY NATIONAL LABORATOR' **Material** RKELEY NATIONAL LABORATOR'S $$D_a = D_t$$ _ Δp_{Loss} _ Burner Size Appliance Efficiency Vent Dimension Vent Vent Vent Location & Material Location & **Material** $$D_a = D_t - \Delta p_{Loss} - D_t$$ Vent Material Vent Design (Bends) **Bird** **Nest** $$D_a = D_t - \Delta p_{Loss} - D_p$$ Exhaust Fans CAZ Location **Envelope Tightness** Other Appliances Usage Patterns | Test | Physical Processes | |------------------------|--------------------| | House depressurization | | | test with pre-set | | | criteria | | | Downdrafting test | | | (Worst-Case | | | Depressurization) | | | Backdrafting test | | | (Downdrafting test + | | | Operation) | | | Cold vent | | | establishment pressure | | | (CVEP) test | | | Test | Physical Processes | | | | | |---|--------------------|-----------------|--|-----------------------|--| | House depressurization test with pre-set criteria | | Exhaust
Fans | | Envelope
Tightness | | | Downdrafting test
(Worst-Case
Depressurization) | | | | | | | Backdrafting test
(Downdrafting test +
Operation) | | | | | | | Cold vent
establishment pressure
(CVEP) test | | | | | | | Test | Physical Processes | | | | | | |---|--------------------|--|-----------------------|---|----------------|-----------------| | House depressurization test with pre-set criteria | Exhaust
Fans | | Envelope
Tightness | | | | | Downdrafting test (Worst-Case Depressurization) | Exha
Fan | | Envelo
Tightn | - | Vent
Design | CAZ
Location | | Backdrafting test
(Downdrafting test +
Operation) | | | | | | | | Cold vent
establishment pressure
(CVEP) test | | | | | | | | Test | Physical Processes | | | | | | |---|--------------------|--|----------------------|---------------|-------------------|-----------------| | House depressurization test with pre-set criteria | | | khaust
Fans | | Envelo
Tightne | | | Downdrafting test
(Worst-Case
Depressurization) | Exha
Fan | | Envelo
Tightne | - | Vent
Design | CAZ
Location | | Backdrafting test
(Downdrafting test +
Operation) | Exhaus
Fans | | invelope
ightness | Vent
Desig | CAZ
n Location | | | Cold vent
establishment pressure
(CVEP) test | | | | | | | | Test | Physical Processes | | | | | | |--|--------------------|--|----------------------|---------------|------------------|-----------------| | House depressurization test with pre-set criteria | | | chaust
Fans | | Envelo
Tightn | | | Downdrafting test (Worst-Case Depressurization) | Exha
Fan | | Envelo
Tightn | - | Vent
Design | CAZ
Location | | Backdrafting test (Downdrafting test + Operation) | Exhaus
Fans | | invelope
ightness | Vent
Desig | | | | Cold vent
establishment pressure
(CVEP) test | Exhaus
Fans | | invelope
ightness | Vent
Desig | | | | Test | Physical Processes | | | | | | | |---|--------------------|--|----------------------|---------------|-------------------|---|--------------| | House depressurization test with pre-set criteria | | | khaust
Fans | | Envelo
Tightne | - | | | Downdrafting test
(Worst-Case
Depressurization) | Exha
Fan | | Envelo
Tightn | - | Vent
Design | | CAZ | | Backdrafting test (Downdrafting test + Operation) | Exhaus
Fans | | invelope
ightness | Vent
Desig | CAZ
n Location | | Bird
Nest | | Cold vent
establishment pressure
(CVEP) test | Exhaus
Fans | | invelope
ightness | Vent
Desig | CAZ
n Location | | Bird
Nest | All tests are impacted by weather at time of test LAWRENCE BERKELEY NATIONAL LABORATORY #### Continuous tests measure more physical processes but are expensive | Test | Advantages | Disadvantages | |------------------------------------|---|--| | Continuous
backdrafting
test | Measures vent pressureMeasures appliance
status | Does not measure spillage events.Cost | | Continuous spillage test | Measures CO/CO₂ Measures spillage zone
Temperature Measures appliance
status | Thermal radiationCost | #### Continuous tests measure more physical processes but are expensive | Test | Advantages | Disadvantages | |------------------------------|---|--| | Continuous backdrafting test | Measures vent pressureMeasures appliance
status | Does not measure spillage events.Cost | | Continuous spillage test | Measures CO/CO₂ Measures spillage zone
Temperature Measures appliance
status | Thermal radiationCost | All tests require two visits, require data analysis, and may not capture weather effects **Meteorological** **Data** LAWRENCE BERKELEY NATIONAL LABORATORY LAWRENCE BERKELEY NATIONAL LABORATORY #### We can simulate physics to better understand the statistics of failure #### We can simulate physics to better understand the statistics of failure #### **Goal: Diagnostic Tool** #### **Open Questions** - What is acceptable probability / frequency of spillage? This is a policy question. - Assess for currently installed (often bad) exhaust fans, or assume what should be there? - Assess for current occupants, or assume standard or high intensity occupant use patterns? - Do we need separate measurement of CAZ air tightness – or is envelope tightness good enough? #### **Extra Slides** #### Termination location of chimneys and single-wall pipes (a) Termination 10 ft (3 m) or Less from Ridge, Wall, or Parapet (b) Termination More Than 10 ft (3 m) from Ridge, Wall, or Parapet FIGURE A.12.6.2.1 Typical Termination Locations for Chimneys and Single-Wall Metal Pipes Serving Residential-Type and Low-Heat Appliances.