Recommendations for Meeting ASHRAE Standard 62.2

LBL, Max Sherman

Context

- Providing IEQ is what buildings are all about
 - Indoor Air Quality/Health a key part
- High Performance Buildings Need Ventilation
 - 62.2 is only American National standard
- Ventilation will take up larger energy fraction
 - Failures are bigger problems in tight houses

Technical Approach

- Energy Simulations
- IAQ Simulations
- Real-world O&M
- Measurements

Core Guidance

- ▶ Follow 62.2: Resistance is Futile
 - Don't leave it to the occupants
 - (Double duty) exhaust fan should be default
- Have a good range hood
 - Cooking pollutants may be biggest source
- Design air handler for good filters
 - MERV 11 or higher will protect against PM2.5

Value

- Energy Savings
 - High efficiency fans; no need to run air handler
- Robust
 - No inlets to clog; no complicated controls
- Low first cost
 - low replacement cost; long life
- ▶ IAQ Benefit
 - exhausts contaminates directly

Market Readiness

- ▶ 62.2 is being implemented now
- (Double duty) exhaust is out there now
- Range hoods are not rated
 - Need to use engineering judgment for now
- Particle filters are rated and available
 - Need to design as part of system

Pros and Cons vs. HRV/ERV/Supply

▶ PRO

- Cheaper, easier, robust, extra exhaust
- Does not require distribution in most houses
- Less sensitive to leakage than balanced systems

CON

- Depressurizes in super-tight houses (inlets?)
- Does not control where air comes from

▶ BOTH

Climate insensitive

HRV/ERV ISSUES

- Recovers heat/humidity, for extreme climates
 - · Leakage, imbalance, defrost lower performance
- Higher first and operating costs
- Tricky installation, O&M
 - Performance variation in the field
- ERV's only save latent energy if independent humidity control
 - Can make indoor humidity higher OR lower

Supply System Issues

- Unbalanced ventilation (like exhaust)
- Allows control/conditioning of incoming air
- Requires energy to temper air
 - Blending with indoor air is common (e.g. CFIS)
 - Can still cause discomfort
- No advantage in hot humid climates
 - Unless combined with DHW, etc.

Exhaust except in Extreme Climates

- HRV in cold climates might be cost effective
- ERV in hot, humid or very cold climates
 - Independent humidity control may be needed
 - Don't connect to wet-room exhausts
- Need high efficiency fans if interlocked
 - Need to avoid short-circuiting otherwise

Technologies Not Quite Ready

- Automated Range Hoods
 - They exist, but no credit and too costly
- Chemical Air Cleaning: not yet for homes
 - Formaldehyde is biggest target
- Smart Ventilation Controllers
 - LBL developed RIVEC; could be soon
- IAQ Controllers
 - TVOC does not count: "Run away; Run away"
- Ultralow pressure drop, particle filters
 - Nanomaterial R&D underway