Encapsulated and Buried Ducts

Robb Aldrich
Steven Winter Associates, Inc.

Why Buried Ducts?

- Ductwork thermal losses can range from 10-45%
- Interior ducts
 current solution,
 but may be
 impractical,
 expensive, or
 increase envelope
 loads

____ Insulation & Air Barrier

First Tests – Florida

Early Buried Duct Tests (FL)

Condensation?

California: Much drier, no Problem

Implementation

Getting it Right... in Florida

A Solution for Humid Climates

Encapsulated, then Buried

Research Questions

- What are the effective R-values?
- What is the improvement in distribution system efficiency?
- Do buried & encapsulated ducts mitigate the risk of condensation on duct surfaces?
- What are the total costs and energy savings?
- What are obstacles and implementation issues?

Retrofits with BASF: Jacksonville, FL

House 1: Buried & Encapsulated

House 2: Buried & Encapsulated

House 3: Encapsulated

Retrofit Homes – Jacksonville, FL

- Monitored pre- and post-retrofit temp and RH:
 - Duct jacket, ccSPF, and boot surfaces
 - Supply registers
 - AHU supply
 - AHU return
 - Attic
 - Living space
 - Outdoor

Measured duct leakage and airflow

After Encapsulation

Effective R-values

- R-value metrics:
 - Nominal listed values for duct insulation
 - Effective heat loss/gain from duct to attic
- Buried duct effective R-values calculated using FEA

Effective R-values

Effective R-values

Duct Configuration	R-4.2 Ducts	R-6 Ducts	R-8 Ducts
Traditional hung ducts	4.6	5.9	7.2
Hung ducts encapsulated in 1.5" of ccSPF	11.3	12.0	12.7
Partially-buried	8.1	10.2	12.3
Fully-buried	12.0	14.1	16.2
Deeply-buried	20.7	22.1	23.5
Encapsulated in 1.5" of ccSPF and partially-buried		19.7	21.0
Encapsulated in 1.5" of ccSPF and fully-buried	22.6	23.8	25.0
Encapsulated in 1.5" of ccSPF and deeply-buried		30.3	31.1

Delivery System Efficiency

ASHRAE Standard 152 determines "the efficiency of space heating and/or cooling thermal distribution systems under seasonal and design conditions."

Condensation Potential (Before)

Condensation Potential (After)

Duct Leakage (pre)

Duct Leakage (post)

Energy Savings

	Predicted Energy Savings from BEopt			
	Cooling	Heating		
House 1	14 %	12 %		
House 2	23 %	26%		
House 3	12 %	17%		

Cost and Savings

	House 1	House 2	House 3
Retrofit Costs	\$2,290	\$3,806	\$956
"Streamlined" Costs	\$1,730	\$3,391	\$530
Utility Bill Savings	\$127	\$571	\$129
Net, Annualized Savings*	\$10	\$513	\$141

^{* 30} yr analysis period, 3% inflation rate, 3% real discount rate, 7% 5-year loan

Retrofit Issues – Quality Control

Electrical wiring permanently spray-foamed in place

Existing flues must be protected

Supply plenum box inadequately spray foamed

Retrofit Issues – Quality Control

Exposed underside of duct

Well-sealed ductwork

Resources

- Code-related considerations:
 - IRC Sections M1601.3, R316.5.3, R316.5.4
 - Title 24 of California Code of Regulations
 - DOE Challenge Home
- Technical References:
 - Several papers since 2000
 - Recent BA Technical Report
 - BA Measure Guideline through peer review

Contact Info

Steven Winter Associates, Inc.

61 Washington St. Norwalk, CT 06854 203-857-0200

Carl Shapiro cshapiro@swinter.com

Bill Zoeller wzoeller@swinter.com

Robb Aldrich raldrich@swinter.com

