

Nuclear Energy Enabling Technologies (NEET)

Advanced Sensors and Instrumentation (ASI) Annual Project Review

Irradiation Testing of Ultrasonic Transducers Joshua Daw INL

May 21-22, 2013

Project Overview

Nuclear Energy

Goal

• Enable in-pile use of ultrasonic sensor technologies for monitoring a wide range of parameters in material and test reactors

Participants

- » Joshua Daw, Joy Rempe, and Joe Palmer**; Idaho National Laboratory
- » Hual-Te Chien; Argonne National Laboratory
- » Pradeep Ramuhalli; Pacific Northwest National Laboratory
- » Bernhard Tittmann and Brian Reinhardt; Pennsylvania State University
- » Ben Wernsman; Bechtel Bettis, Inc.*
- » Gordon Kohse and Lin-Wen Hu; Massachusetts Institute of Technology**
- » Jean-François Villard; Commissariate a l'energie atomique*

DOE-R&D programs benefitting from this work

 FCRD, ATR NSUF, ARC, SMR, NGNP, LWR/Reactor Safety (new), and LWRS/ Industry Programs

*Self-funded; ** ATR-NSUF funded

Technology Impact

Nuclear Energy

Industrial applications demonstrate ultrasound-based sensors offer unprecedented opportunities for measuring numerous parameters

- Temperature (up to 3000 °C)
- Fission gas composition and pressure
- Water level
- Coolant flow
- Dimensional changes (down to ~1 μm)
- Microstructure changes [e.g., grain/pore development, crack initiation and growth, etc.]
- In-service component inspection

Three-year project addresses cross-cutting areas hindering inpile ultrasonic sensor deployment

- Transducer irradiation survivability
- Signal processing

Research Plan

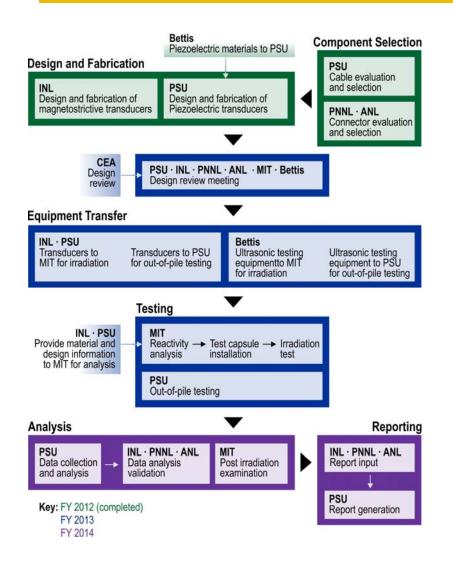
Nuclear Energy

FY 2012: \$325,000

- Transducer Irradiation
 - Identify needs from DOE-NE programs and define irradiation test program
 - Identify candidate transducers
 - Begin test rig design
- Signal Processing Enhancement
 - Identify signal processing needs to meet DOE-NE program requirements
 - Identify hardware requirements

FY 2013: \$334,000

- Transducer Irradiation
 - Prepare and review test plan summarizing proposed irradiation
 - Fabricate transducers for irradiation and transmit to MIT
 - Collaborate on ATR NSUF irradiation deploying test rig and monitoring data from test rig


FY 2014: \$ 316,000

- Transducer Irradiation
 - Validate data and data interpretation.
 - Develop recommendations based on data from irradiation test.
- Signal Processing Enhancement
 - Develop framework for integration to common platform
 - Develop and validate signal processing algorithms for selected parameters

FY 2012 Accomplishments

Nuclear Energy

Transducer Irradiation

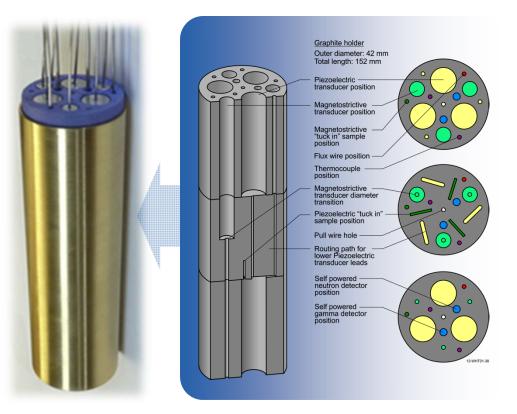
- Leverage PSU-led irradiation funded by ATR NSUF at MITR
- Identified magnetostrictive and piezoelectric transducer materials for irradiation
- Began capsule design and component selection

Signal Processing Enhancement

- Input gathered from cognizant program leads
- Identification of parameters of prime interest
- Developed hardware requirements
- Issued "NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report", INL/EXT-12-27233, Sept. 2012.

FY 2013 Activities

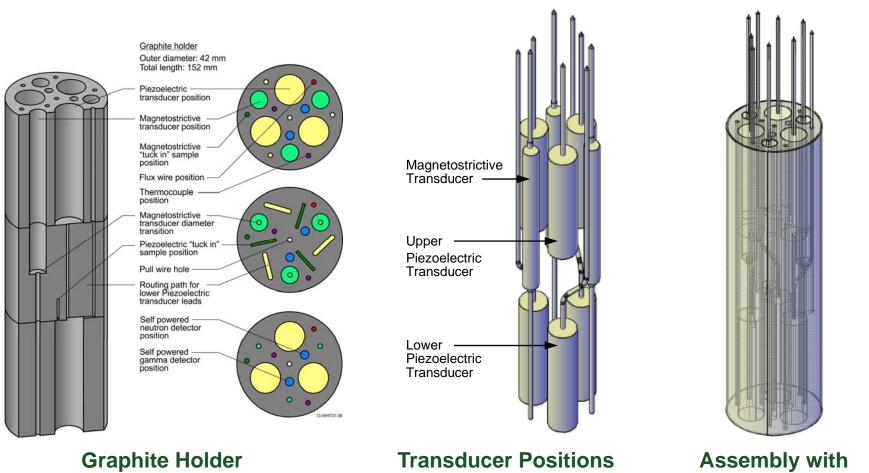
Nuclear Energy


Ultrasonic Transducer Irradiation Survivability

- Capsule and transducer design and component selection
- Test plan development
- Complete transducer fabrication and transmit to MIT

Peer-reviewed publications

- ANIMMA 2013 Conference Paper
- IEEE Journal Paper


"NEET In-Pile Ultrasonic Sensor Enablement-FY 2013 Status Report," INL/EXT-13-29144, to be issued in September 2013.

Accomplishments (FY-12,13) Test Capsule Design

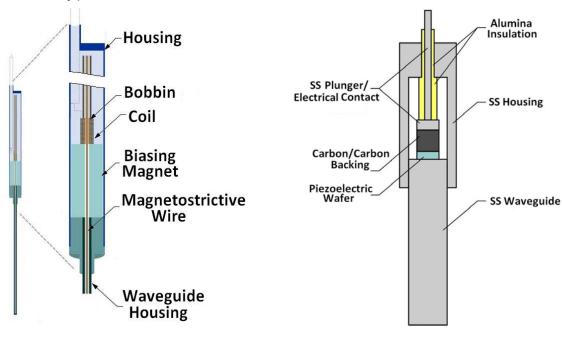
Nuclear Energy

Titanium Shell

Accomplishments (FY-12,13) Transducer Design & Sensor Selection

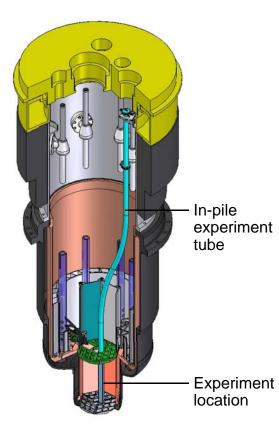
Nuclear Energy

Magnetostrictive Materials


- Remendur
- Galfenol
- Arnokrome ("tuck in" only)

Piezoelectric Materials

- Aluminum Nitride
- Bismuth Titanate
- Zinc Oxide


- 2 Type K Thermocouples
- 1 Vanadium Emitter Self Powered Neutron Detector
- 1 Platinum Emitter Self
 Powered Gamma Detector
- 4 Temperature Melt Wire Capsule
- Fast and Thermal Flux Wires

Nuclear Energy

Accomplishments (FY-13) Test Plan Development

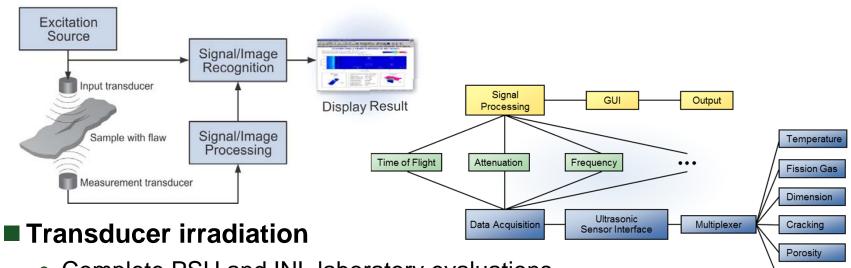
MITR Test Location

Irradiation Test

- 18 Month Duration
- Total Fluence: >1x10²¹n/cm² Fast
- Expected Temperature: ~400 °C

Laboratory Furnace Tests

- Long Duration Heating
- Thermal Cycling
- Maximum Operating Temperature


- Pulse-Echo
- Density
- Impedance
- Efficiency d₃₃

- Hysteresis
- Optical
- SEM

Planned Accomplishments

Nuclear Energy

- Complete PSU and INL laboratory evaluations
- Validate data from ultrasonic transducer irradiation
- Support PIE evaluations and data interpretation
- Signal processing enhancement to be the focus of FY-14 work
 - Development of algorithms for selected parameters
 - Benchmarking with representative/experimental data
- Issue final program report.

Grain growth

Crosscutting Benefits

Nuclear Energy

- Project team selection and interactions with program leads ensure various DOE-NE programs (e.g., FCRD, ATR NSUF, ARC, SMR, NGNP, LWRS, TREAT Restart, etc.) customer requirements identified:
 - Compact size
 - Multiple parameters monitored online (temperature profiling, fission gas evolution, etc.)
 - Radiation resistant
 - High temperature compatibility with appropriate materials
 - High accuracy
 - High resolution
 - Flexibility (variable applications, sensitivities, resolution, accuracies, etc.)

Continued interactions

• Distribute annual status reports and participate in program reviews to gain input and concurrence from cognizant experts in various DOE-NE programs.

Enables advanced sensor deployment and positions U.S. MTRs to become world-class leader in irradiation testing

- Enhanced capabilities for US research (DOE-NE, industry, regulators, NR, BES, etc.)
- Attract foreign customers (industry, regulators, etc.)

Crosscutting Benefits

Nuclear Energy

FCRD

- Enables use of ultrasonic sensors in irradiation test rigs for high accuracy, high resolution measurement of temperature, gas composition and pressure, crack initiation and growth
- Sensors provide real-time data required for validating new multi-scale fuel models

ATR NSUF

- Enables use of ultrasonic sensors for measuring temperature, gas composition and pressure, elongation, crack initiation and growth in ATR NSUF irradiations
- Provides US MTR users unique new higher accuracy, higher resolution sensors

NGNP

- Enables use of high temperature ultrasonic sensors in irradiation test rigs and online monitoring of conditions in first plant
- Sensors provide real-time data to validate model predictions during irradiation and reactor operation

Crosscutting Benefits (Cont.)

Nuclear Energy

- Enables use of ultrasonic sensors in irradiation test rigs.
 - Flexibility of ultrasonic sensor design ideal for unusual geometries and harsh environments.
 - Sensors provide data for validating new multi-scale multi-physics models.
- On-line monitoring of SFR components
- Real-time monitoring of SFR plant conditions during first prototype and operating fleet
 - In-vessel ultrasonic flow meters
 - Core temperature profiling
 - Fuel performance
 - Material degradation

Advanced SMRs

- Flexibility of ultrasonic sensor design ideal for unusual geometries and harsh environments.
- On-line monitoring of SFR components and conditions

Examples

Crosscutting Benefits (Cont.)

Nuclear Energy

LWRS / Industry and Reactor Safety Programs

- Enables use of ultrasonic sensors in fuels and materials irradiation test rigs for high accuracy, high resolution measurement of temperature, gas composition and pressure, crack initiation and growth
 - Validation data for new fuels and materials models
 - Demonstrating the performance of accident tolerant fuels during long duration irradiations and transient irradiation tests.
- Enables deployment of new enhanced accident tolerant sensors for the commercial fleet, such as water level within LWR reactor vessels and other large components (e.g., pressurizers, steam generators, etc.)

Transition to Competitive Research

Nuclear Energy

Enables advanced ultrasonic sensor deployment and positions U.S. MTRs to become world-class leader in irradiation

- Compact, robust sensors
- Multiple parameter measurement (e.g., temperature, elongation, gas composition and pressure, crack initiation and growth, etc.)
- Flexibility (variable applications, sensitivities, resolution, accuracies, etc.)

Anticipated hand-off to occur at end of MITR irradiation

- Programs (e.g., DOE-NE, NR, regulators, and industry) will implement appropriate transducer into sensor design and apply signal processing enhancements
- Cross-cutting sensors applicable to multiple programs candidate for future NEET projects

Conclusion

Nuclear Energy

- Leverages NEET funding to guide much needed irradiation test to quantify ultrasonic transducer materials survivability in high neutron flux MTRs for long duration irradiations
- Identifies signal processing requirements for in-pile measurement of various parameters with ultrasonic sensors
- Enables development of world-class, ultrasound-based instrumentation capability required for high flux US MTR irradiation tests needed by U.S. (DOE-NE, regulator, industry, and NR) and international programs
 - Higher fidelity measurements than possible with current technologies
 - New measurements not currently possible in MTRs
 - Measurements in harsher conditions than currently possible.