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Project overview 
 Objectives 

 Accurate short-term probabilistic forecasting of real-time LMP. 
 Incorporate real-time measurements (e.g. SCADA/PMU). 
 Scalable computation techniques.  

 Summary of results 
 A real-time LMP model with forecasting and measurement 

uncertainties. 
 A Markov chain abstraction of real-time LMP computation. 
 Monte Carlo sampling techniques. 
 Preliminary simulations. 



Outline 

 Motivation 
 Load and real-time LMP as random processes 
 Benchmark techniques 
 Comments on the state of the art. 

 Probabilistic forecasting of real-time LMP 
 Simulation studies 
 Summary and future work 

 



Sample paths of load and LMP  



Day ahead vs. real-time 
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Benchmark techniques 

 Time series  
 ARMA, ARIMA, ARMAX, GARCH 

 Machine learning 
 Neural networks, support vector machines (SVM) 

 Hybrid techniques 
 Jump (switching) models 

 



Load forecasting 
Forecasting 
Method 

MAPE 

ANN [1] 
ANN [2] 

1.46% 
1.24% 

SVM [3] 2.09% 

[1] P. Mandal, T. Senjyu, N. Urasaki, and T. Funabashi, “A neural  
network  based several-hour-ahead electric load forecasting using 
similar days approach,” Int. Journal. of Electric Power and Energy 
System, vol. 28, no. 6, pp. 367–373, July 2006. 
[2] P. Mandal, T. Senjyu, N. Urasaki, and T. Funabashi, “Short-Term 
Price Forecasting for Competitive Electricity Market,” Power 
Symposium, 2006. NAPS 2006. 38th North. 
[3] S. Fan, C. Mao and L. Chen, “Next-day electricity-price 
forecasting using a hybrid network,” IET Generation, Transmission & 
Distribution, Volume 1, Issue 1, January, 2007. 
 

 



Day ahead LMP forecasting 
Forecasting 
Method 

MAPE 

ANN [1] 
ANN [2] 
ANN [4] 

15.96% 
12.92% 
8.67% 

SVM [3] 11.31% 

GARCH [5] 11.55% 

ARMAX [6] 9.01% 
[4] P. Mandal, T. Senjyu, N. Urasaki, and T. Funabashi, “A neural  
network  based several-hour-ahead electric load forecasting using 
similar days approach,” Int. Journal. of Electric Power and Energy 
System, vol. 28, no. 6, pp. 367–373, July 2006. 
[5] R. Garcia, J. Contreras, “A GARCH Forecasting Model to Predict 
Day-Ahead Electricity Prices,” Int. Journal of Electric Power and 
Energy System, vol. 20, no. 2, MAY 2005. 
[6] J. Zhang, C. Yu, G. Hou, “Application of Chaotic Particle Swarm 
Optimization in the Short-term Electricity Price Forecasting,” Int. 
Journal of Electric Power and Energy System, vol. 28, no. 6, pp. 
367 373  July 2006  



Real-time LMP forecasting 

Actual and forecast six-hours-ahead electricity price for 
Victorian electricity market (Nov 1st to 7th, 2003). 

Actual and forecast six-hours-ahead electricity price 
for PJM market (Jan 8th  to 14th, 2006). 

[4] F. Sarafraz, H. Ghasemi, H. Monsef, “Locational Marginal Price Forecasting by 
Locally 
Linear Neuro Fuzzy Model ” EEEIC  2011 10th   Rome   



Summary of the state-of-the-art 

 Extensive literature: 
 Mostly black box techniques 
 Primarily providing point forecasting 
 Rarely deal with on LMP and network effects 

 Extremely accurate load forecasting (1-3%) 
 Relatively poor price forecasting (10-20%)  

 



Outline 
 Motivation 
 Probabilistic forecasting of real-time LMP 

 A stylized real-time ex post LMP model  
 Information structure 
 LMP states and Markov chain representations 
 Probabilistic forecast 

 Preliminary simulations 
 Summary and future work 

 



A stylized real-time ex post LMP 
model  



State estimation  



Ex ante dispatch  



Ex post eligible generators  



Ex post LMP  



Ex post LMP via IDCOPF  



Information structure and Markov 
chain 



Probabilistic forecasting 



Outline 

 Motivation 
 Probabilistic forecasting of real-time LMP 
 Preliminary simulations 

 IEEE 16 bus with NYISO sample load profiles 
 Varying load errors and correlations 
 Monte Carlo techniques to estimate transition 

matrices  

 Summary and future work 
 



Load and price distributions 
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LMP trajectories 
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Time inhomogeneous Markov 
Chain 
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Each blue circle corresponds to a markov  state
Each link corresponds to a transition 



Transition Matrices 
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6 hours ahead prediction error 
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Best prediction

2nd best prediction
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LMP prediction for different time 
horizon 
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LMP distribution for different prediction 
horizons 
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Planned research 

 Forecasting techniques  
 Incorporating load models 
 More sophisticated Monte Carlo techniques (important 

sampling, MCMC) 
 Generator behavior models 
 Forecasting with renewable sources 
 Demand response 

 Extensive simulation studies and comparisons 
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Observability 



A graph theoretic condition 
(KCD’80) 



Undetectable attack (KJTT’11) 



Only half of the meters are needed! 



Bad data identification and removal 



Framing attack via QCQP 



DoS attack on real-time operations 



Simulation examples (AC) 



Conclusion 

 Attacks on cyber physical systems (power 
systems) are real: 
 State attacks 
 Topology attacks 
 Dispatch attacks 

 A key step toward protection is deploy 
authentication mechanisms. 
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