REAL-TIME PRICE FORECAST WITH BIG DATA

A STATE SPACE APPROACH

Lang Tong (PI), Robert J. Thomas, Yuting Ji, and Jinsub Kim School of Electrical and Computer Engineering, Cornell University

Jie Mei, Georgia Institute of Technology

DATA QUALITY AND ITS EFFECTS ON MARKET OPERATIONS

DENY OF SERVICE ATTACK ON REAL-TIME ELECTRICITY MARKET
COVER UP PROTECTION AGAINST TOPOLOGY ATTACK

Lang Tong (PI), Robert J. Thomas, and Jinsub Kim Cornell University

Project overview

Objectives

- Accurate short-term probabilistic forecasting of real-time LMP.
- Incorporate real-time measurements (e.g. SCADA/PMU).
- Scalable computation techniques.

Summary of results

- A real-time LMP model with forecasting and measurement uncertainties.
- A Markov chain abstraction of real-time LMP computation.
- Monte Carlo sampling techniques.
- Preliminary simulations.

Outline

- Motivation
 - Load and real-time LMP as random processes
 - Benchmark techniques
 - Comments on the state of the art.
- Probabilistic forecasting of real-time LMP
- Simulation studies
- Summary and future work

Sample paths of load and LMP

Day ahead vs. real-time

Benchmark techniques

- □ Time series
 - ARMA, ARIMA, ARMAX, GARCH
- Machine learning
 - Neural networks, support vector machines (SVM)
- Hybrid techniques
 - Jump (switching) models

Load forecasting

Forecasting Method	MAPE
ANN [1] ANN [2]	1.46% 1.24%
SVM [3]	2.09%

- [1] P. Mandal, T. Senjyu, N. Urasaki, and T. Funabashi, "A neural network based several-hour-ahead electric load forecasting using similar days approach," Int. Journal. of Electric Power and Energy System, vol. 28, no. 6, pp. 367–373, July 2006.
- [2] P. Mandal, T. Senjyu, N. Urasaki, and T. Funabashi, "Short-Term Price Forecasting for Competitive Electricity Market," Power Symposium, 2006. NAPS 2006. 38th North.
- [3] S. Fan, C. Mao and L. Chen, "Next-day electricity-price forecasting using a hybrid network," IET Generation, Transmission & Distribution, Volume 1, Issue 1, January, 2007.

Day ahead LMP forecasting

Forecasting Method	MAPE
ANN [1] ANN [2] ANN [4]	15.96% 12.92% 8.67%
SVM [3]	11.31%
GARCH [5]	11.55%

ARMAX [6] 9.01% [4] P. Mandal, T. Senjyu, N. Urasaki, and T. Funabashi, "A neural network based several-hour-ahead electric load forecasting using similar days approach," Int. Journal. of Electric Power and Energy System, vol. 28, no. 6, pp. 367–373, July 2006.

[5] R. Garcia, J. Contreras, "A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices," Int. Journal of Electric Power and Energy System, vol. 20, no. 2, MAY 2005.

[6] J. Zhang, C. Yu, G. Hou, "Application of Chaotic Particle Swarm Optimization in the Short-term Electricity Price Forecasting," Int. Journal of Electric Power and Energy System, vol. 28, no. 6, pp.

Real-time LMP forecasting

Actual and forecast six-nours-anead electricity price for Victorian electricity market (Nov 1st to 7th, 2003).

Actual and forecast six-hours-ahead electricity price for PJM market (Jan 8th to 14th, 2006).

[4] F. Sarafraz, H. Ghasemi, H. Monsef, "Locational Marginal Price Forecasting by Locally

Linear Name Francis Marial 7 FFFIO 0044 40th David

Summary of the state-of-the-art

- Extensive literature:
 - Mostly black box techniques
 - Primarily providing point forecasting
 - Rarely deal with on LMP and network effects
- Extremely accurate load forecasting (1-3%)
- Relatively poor price forecasting (10-20%)

Outline

- Motivation
- Probabilistic forecasting of real-time LMP
 - A stylized real-time ex post LMP model
 - Information structure
 - LMP states and Markov chain representations
 - Probabilistic forecast
- Preliminary simulations
- Summary and future work

A stylized real-time ex post LMP model

State estimation

Ex ante dispatch

Ex post eligible generators

Ex post LMP

Ex post LMP via IDCOPF

- ullet Obtain the set of eligible generators \mathcal{G}_t and the ex ante congestion $\hat{\mathcal{C}}_{t|t-1}$
- Compute an incremental DC OPF (Idcopf):

$$\begin{array}{ll} \text{minimize} & \sum_{i \in \mathbf{G}_t} c_i \Delta p_i \\ \text{subjcet to} & \sum_i \Delta p_i = 0 \\ & \Delta p_{\min} \leq \Delta p_i \leq \Delta p_{\max} \quad i \in \mathbf{G}_t; \\ & \sum_{i \in \mathbf{G}_t} A_{ki} \Delta p_i \leq 0; \quad k \in \mathbf{C}_{t|t-1} \end{array}$$

The vector LMP is given by

$$\hat{\pi} = \hat{\lambda}^* \mathbf{1} - A\hat{\mu} \stackrel{\Delta}{=} \mathsf{Idcopf}(\mathcal{G}_t, \mathcal{C}_{t|t-1})$$

Information structure and Markov chain

Probabilistic forecasting

$$f_{\pi_{t+T}|t} = \delta_{\pi_t} \times P_t \times P_{t+5} \times \dots \times P_{t+T-1}$$

Outline

- Motivation
- Probabilistic forecasting of real-time LMP
- Preliminary simulations
 - IEEE 16 bus with NYISO sample load profiles
 - Varying load errors and correlations
 - Monte Carlo techniques to estimate transition matrices
- Summary and future work

Load and price distributions

LMP trajectories

Time inhomogeneous Markov Chain

Transition Matrices

6 hours ahead prediction error

LMP prediction for different time horizon

LMP distribution for different prediction horizons

Planned research

- Forecasting techniques
 - Incorporating load models
 - More sophisticated Monte Carlo techniques (important sampling, MCMC)
 - Generator behavior models
 - Forecasting with renewable sources
 - Demand response
- Extensive simulation studies and comparisons

DATA QUALITY AND ITS EFFECTS ON MARKET OPERATIONS

DENY OF SERVICE ATTACK ON REAL-TIME ELECTRICITY MARKET

Lang Tong (PI), Robert J. Thomas, and Jinsub Kim Cornell University

Observability

- Power system as a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
 - System state x: voltage phasors at buses (vertices)
 - Observation equation: z = h(x, 9)

Locally unobservable at x*:

A graph theoretic condition (KCD'80)

Theorem

A network is observable if and only if \exists a spanning tree with an assigned meter on each edge.

Undetectable attack (KJTT'11)

Theorem

The attacker can make the power system unobservable by controlling a set of meters associated with a cut without being detected by the control center.

• The minimum number of meters accessible to the attacker is $\Theta(|\min\text{-cut}|)$.

Only half of the meters are needed!

Framing attack:

- Let \mathcal{I} be a set of meters on a cut with partition $\mathcal{I} = \mathcal{I}_1 \bigcup \mathcal{I}_2$.
- The attacker injects bad data on \$\mathcal{I}_1\$ such that the control center (i) detects bad data; (ii) identifies bad data occur at \$\mathcal{I}_2\$.

Bad data identification and removal

- State estimate: $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} (\mathbf{z} h(\mathbf{x}))^T \Sigma^{-1} (\mathbf{z} h(\mathbf{x}))$
- Residue: $\mathbf{r} \triangleq \mathbf{z} h(\hat{\mathbf{x}})$; $\mathbf{r}^N \triangleq \Omega^{-1}\mathbf{r}$.
- Bad data identification and removal:
 - If $\mathbf{r}^T \Sigma^{-1} \mathbf{r} \leq \tau$, accept $\hat{\mathbf{x}}$;
 - If $\mathbf{r}^T \Sigma^{-1} \mathbf{r} > \tau$, remove the meter *i* with the largest $|r_i^N|$.

Framing attack via QCQP

maximize $\mathbb{E}\{\sum_{i\in\mathbb{J}_{\mathsf{T}}}(r_i^N)^2\}=\|R\mathbf{a}\|_2^2$ subject to $\|\mathbf{a}\|_2=1, \mathbf{a}\in\mathcal{A}$ $\tilde{\mathbf{a}}\in\mathsf{Col}(\tilde{H})$

maximizing residue energy of target meters. find target direction $(\tilde{\mathbf{a}} = \tilde{H} \Delta \mathbf{x}).$

DoS attack on real-time operations

Simulation examples (AC)

Conclusion

- Attacks on cyber physical systems (power systems) are real:
 - State attacks
 - Topology attacks
 - Dispatch attacks
- A key step toward protection is deploy authentication mechanisms.