

R&M Project 2A:

Evaluating the Effects of Managing Controllable Demand and Distributed Energy Resources Locally on System Performance and Costs

Tim Mount, Eilyan Bitar and Ray Zimmerman

Cornell University

Alberto Lamadrid

Lehigh University

OUTLINE OF THE PRESENTATION

PART I: Storage (Mount)

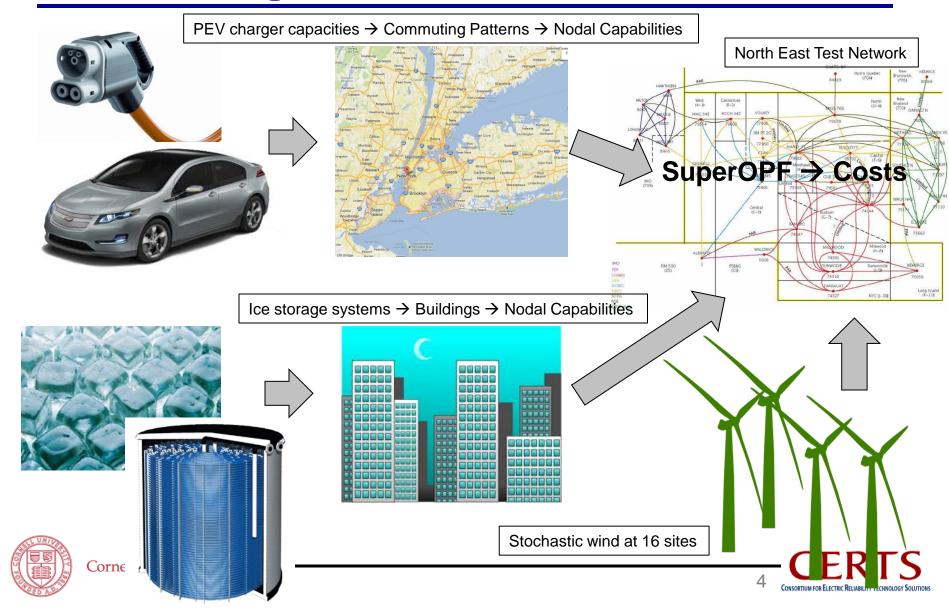
PART II: Ramping* (Lamadrid)

PART III: Robust Optimization* (Bitar)

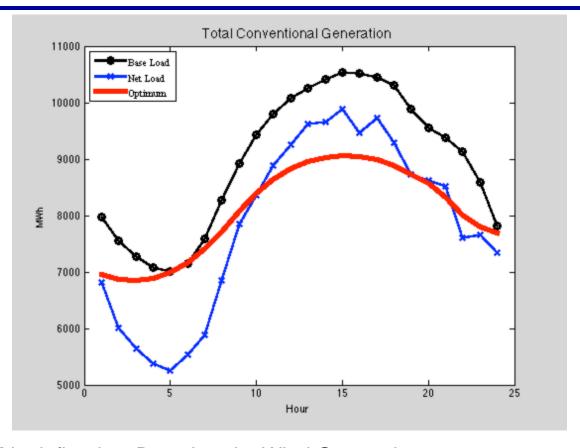
*(Note: This is a new part of the project that began on 3/30/13)

PART I: Storage

Wooyoung Jeon
Hao Lu
Jung Youn Mo

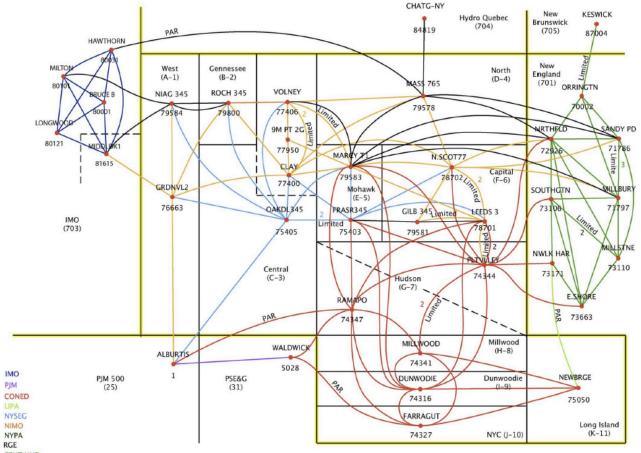


Context of the Research: An Integrated Multi-Scale Framework

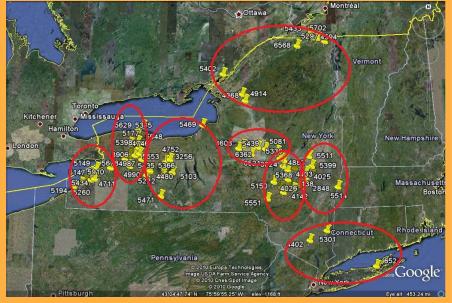

An NSF I/UCRC

Characterizing the Economic Problem of Meeting the Daily Demand for Electricity in NYC

- Net Load is defined as Base Load Wind Generation
- **Optimum** is the least cost dispatch with 5 GWh of PHEV and 5 GWh of thermal storage
- The optimum dispatch is flatter and smoother than Net Load
- WHAT HAPPENS WHEN A POWER NETWORK IS CONSIDERED?

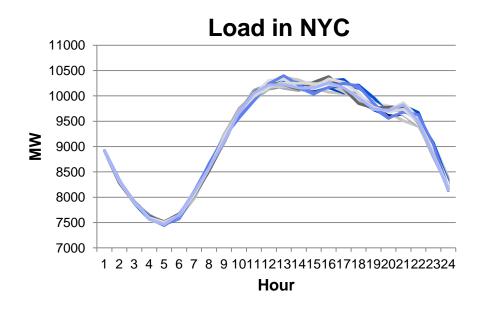


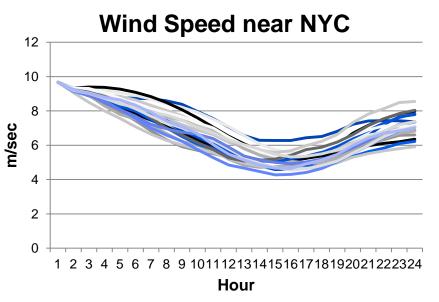
Reduced NPCC System (Allen, Lang and Ilic (2008))


NREL Wind Site Clusters (EWITS)

New England

New York State


Uncertainty of Load and Wind Speed



(New York City as an example)

16 ARMAX models estimated for hourly Temperature = f(Cycles)

- 16 ARMAX models estimated for hourly Log[Wind Speed + 1] = f(Temperature, Cycles)
- 7 ARMAX models estimated for hourly Log[Load] = f(CDD, HDD, Cycles)
- → Simulate hourly profiles of Wind Speed and Load for any specified day given a forecast of Temperature

Dependent Variable	Temperature	Log[Wind Speed + 1]	Log[Load]		
OLS R2	79%	8%	90%		
ARMAX Pseudo R2	99%	75%	99%		

System Characteristics of the NE Test Network and the Five Cases

NYNE GENERATING CAPACITY								
Peaking (GW) 37								
Baseload (GW)	26							
Fixed Imports (GW)	3							
TOTAL (GW)	66							
New Wind (GW)	29							
Storage Capacity (GW)	5.5							
Storage Energy (GWh)	33							
Peak Load (GW)	60							
Average Load (GW)	49							

Characteristics of Wind Input

Wind/conventional capacity: 48%, Capacity factor of wind: 21%, Expected potential wind generation could supply 13% of the daily energy.

Properties of Deferrable Demand

For each hour, the level of demand (system load) is divided into conventional demand (85%) and cooling demand (15%) that can be covered by ice batteries or by air conditioning.

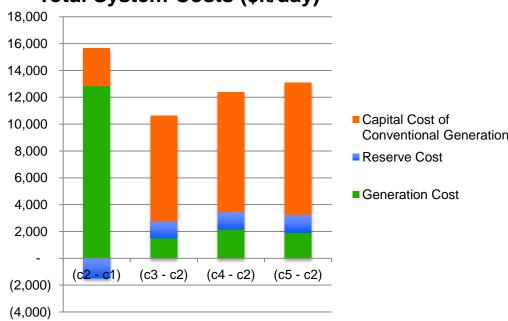
Case 1: No Wind: Initial base system

Case 2: Wind, 32 GW of wind capacity at 16 locations added.

Case 3: Case 2 + Deferrable Demand (DD) at five load centers with a total capacity of 5.7GW (34GWh)

Case 4: Case 2 + Energy Storage System (ESS) collocated at the wind sites with a total capacity of 5.7GW (34GWh)

Case 5: Case 2 + DD/2 + ESS/2



Summary of the Reductions in System Costs

Composition of Savings in Total System Costs (\$k/day)

Column 1: Adding Wind (c2 - c1)

Column 2: Adding DD (c3 –c2)

Column 3: Adding ESS (c4 - c2)

Column 4: Adding (DD + ESS)/2 (c5 - c2)

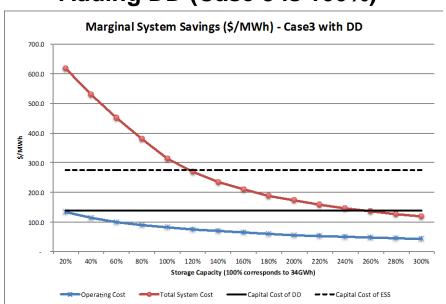
Adding Wind Capacity (c2 – c1)

- Large reduction in Generation Cost,
- Small reduction in Capital Cost,
- Increase in Reserve Cost.

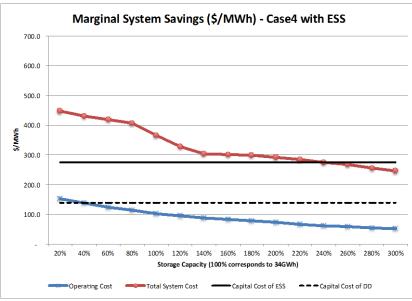
Adding Storage ((c3, c4, c5) – c2)

- Small reductions in Generation Cost,
- Small reductions in Reserve Cost,
- Large reductions in Capital Cost (c5 > c4 > c3)

BUT → are the savings big enough to cover the Capital Cost of storage?



Marginal Savings in System Costs with Additional Amounts of DD and ESS



An NSF I/UCRC

Adding DD (Case 3 is 100%)

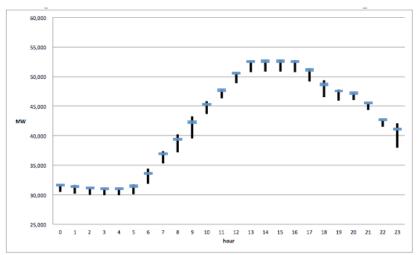
Adding ESS (Case 4 is 100%)

Marginal savings in **Operating Cost** (Generation + Ramping) are not high enough to the cover the low Capital Cost of DD for either DD (Case 3) or ESS (Case 4).

Marginal savings in **System Cost** (Operating + Capital) are high enough at 100% to cover the high Capital Cost of ESS for both DD and ESS.

The marginal savings of **System Cost for DD** are limited by the hourly levels of demand for cooling services ("discharging" DD is not fungible for other services).

The Hourly Ranges of Conventional Generation with and without Storage



All Nor I/UCKC

Case 2: Wind with no Storage

55,000
50,000
45,000
40,000
35,000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 hour

Case 3: Wind with DD Storage

Adding DD (Thermal Storage) Capacity (similar results for Case 4 with ESS)

- 1) Reduces the range of conventional generation in the system states
- 2) Reduces the amount of ramping purchased from conventional generators
- 3) Lowers the peak level of conventional generation
- 4) Increases the minimum level of conventional generation

The Effects of Thermal Storage on the Optimum Dispatch in Different System States

An NSF I/UCRC

OPTIMUM DISPATCH AT THE PEAK HOUR

	Case 2: Wind with NO Storage				Case 3 - Case 2: Wind with DD (Thermal Storage)								
	Intact States		· ·		Contingency 2		Intact States		Contingency 1		· .		
	Wind 1	Wind 4	Wind 1	Wind 4	Wind 1	Wind 4		Wind 1	Wind 4	Wind 1	Wind 4	Wind 1	Wind 4
Supply													
Conventional Generation	56821	54330	56326	52698	56821	53183		-4038	-1795	-4468	-1804	-4468	-1795
Wind Generation	1603	4094	1603	5725	1603	5240		0	2132	0	2687	0	2882
ESS (Discharging > 0)	-	-	-	-	-	-		-	-	-	-	-	-
Import	3388	3388	3388	3388	3388	3388		0	0	0	0	0	0
Total Energy Supply	61812	61812	61318	61812	61812	61812		-4038	338	-4468	883	-4468	1087
Wind Spilled	0	7482	0	5851	0	6336		0	-2132	0	-2687	0	-2882
Unforced Outage	-	-	1641	1641	1147	1147		-	•	0	0	0	0
Demand													
Conventional Demand	61812	61812	61318	61812	61812	61812		-4468	-4468	-4468	-4468	-4468	-4468
Deferrable Demand	-	-	-	-	-	-		430	4468	0	4468	0	4468
Charging Thermal Storage	-	-	-	-	-	-		0	338	0	883	0	1087
Total Energy Purchased	61812	61812	61318	61812	61812	61812		-4038	338	-4468	883	-4468	1087
Discharging Thermal Storage	-	-	-	-	-	-		4038	0	4468	0	4468	0
Load Not Served	0	0	494	0	0	0		0	0	0	0	0	0

Wind 1: System State with a LOW Wind Speed (54%)

Wind 4: System State with a HIGH Wind Speed (7%)

Wind 2 and Wind 3: Not shown (39%)

GENERAL CONCLUSIONS

- High penetrations of renewable generation lower the wholesale price of energy BUT increase the ramping and capacity costs for the conventional generators → "missing money"
- All market participants should pay for the services they use and get paid for the services they provide → new rate structures
- Wholesale customers and aggregators who manage deferrable demand (DD) should get substantial economic benefits by:
 - Purchasing more energy at less expensive off-peak prices
 (pay real-time wholesale prices)
 - Reducing their demand (capacity) during expensive peakload periods (pay "correct" demand charge)
 - Selling ancillary services (ramping) to mitigate wind variability (participate in the ramping market by metering DD separately to distinguish between "instructed" versus "uninstructed" demand)

Cornell University

PART II: Ramping

PART III: Robust Optimization

Thank you Questions?

