DOE/OE Transmission Reliability Program

Data Validation & Conditioning

Kenneth Martin **Electric Power Group** martin@electricpowergroup.com June 27-28, 2013 Washington, DC

The Problem

- Phasors are well known to engineers ... but synchrophasors are not
- Synchrophasor value dependencies
 - Precise timing source, algorithms, & hardware
- Systems dependent on real-time communications
 - Delay (latency), bandwidth, errors, & dropouts
- Need comparability with established systems (SCADA)
- Wide area, high-speed faster actions
 - Need assurance measurements are correct and...
 - Detect and fix data problems

Introduction

- Data Validation and Conditioning Project
 - RFP issued in June 2012
 - Awarded to EPG in December 2012
 - Completion by October 2014
- Three stages
 - Stage 1 survey, study, & prototype development
 - Stage 2 prototype demonstration
 - Stage 3 prototype functional specifications

- Develop, test and prototype various methods for conditioning and validating real-time synchrophasor data
 - Applicable to SGIG projects
 - Usable in deployed architectures
 - Include consideration of design & deployment
- Output includes cleaned data & quality flags

EPG Proposal

- Data validation based on
 - Flags in data
 - Data relations & logic
 - Comparisons EMS/model
- Issues go deeper than data
 - Equipment selection & compatibility
 - System design
 - System administration
 - Operation and maintenance
- Plan to tie all aspects together

EPG Proposal and Plan

Phase 1, Task 1

Review Existing SGIG Systems

Approach:

- Survey companies with SGIG projects and other companies with significant synchrophasor initiatives
- Review literature-sources NASPI, IEEE, etc.
- Summarize findings & report

Topics Surveyed:

- System Administration
- System Design and Implementation
- Operational Data Validation Systems
- Current Experience and Future Plans

System Administration

- Structure depends upon company size, project needs, experience, etc.
- Small management: 1-2 people
- Large management team: 5-6 people with task area responsibility

- Most management teams worked well
- Management focused on implementation, not O&M (new systems)
- Some desire for more resources (staff) and better training
- Could use clearer procedures

System Design and Implementation

- Typical design: $PMU \rightarrow PDC (TO CC) \rightarrow PDC (ISO CC)$
- Basic system with no redundancy to full redundancy
- Monitoring locations: Key substations, tie-lines, generators, wind farms, HVDC lines, etc.
- Convenience, cost, vendor familiarity
- Stand-alone PMUs, dual function relays (DFRs)
- Locations based on available infrastructure, communication, and cost considerations

- Would like more bandwidth to substations
- Better latency performance
- Need better processes to address problems

System & Data Validation

Installation Validation

- Substation level Local meters/Relay test set
- **Control Center level Comparison with EMS**
- Equipment installations not always checked/ verified

- On-line data validation by vendor applications
 - PDC, Real-time visualization & data analysis
- Data Validation not done consistently

- User applications not using error flags, or other data validation indicators
- Alarm/Email notifications not enabled

Current Experience & Future Plans

- 90% to 99.96% system reliability
- Maintenance/replacement cycle same as for relays
- Budget constraints

Future Plans
as Voiced by
Respondents

- Most utilities installing more PMUs than originally planned
- Some new emphasis on sub-transmission and distribution systems

FLECTRIC RELIABILITY TECHNOLOGY

 Many companies have or are planning to integrate phasor data with SE

List of 20 Survey Participants

- Alberta Electric System Operator
- Ameren
- American Electric Power
- American Transmission Company
- Arizona Public Service
- Baltimore Gas and Electric
- BC Hydro
- Bonneville Power Administration
- Dominion Power

- Idaho Power Company
- ISO-New England
- Los Angeles Department of Water and Power
- Manitoba Hydro
- New York Power Authority
- Oklahoma Gas and Electric
- ONCOR
- PEPCO
- PJM Interconnection, LLC
- Salt River Project
- Southern California Edison

CONSORTIUM FOR ELECTRIC RELIABILITY TECHNOLOGY SOLUTION

Phase 1, Task 2

Best practices recommendations

Approach:

- Identify practices in companies that were reported as being successful
- Combine with EPG experience in working with companies
- Summarize in best practices recommendations
 Best Practices Topics:
- System Administration
- System Design and Implementation

Project status

- Phase 1, Task 1 complete
- Phase 1, Task 2 under way
 - Survey did not yield much operational information
 - Systems are new, little experience past implementation
 - Best practices focus on installations
- Phase 1, Task 3
 - Conceptual work under way

Overall project schedule

EPG Project Team

Principal Investigators

- Ken Martin
- John Ballance

Engineers

- Iknoor Singh
- Prashant Palayam
- Xuanyu Wang
- Chen Sun

Software architect

Simon Mo

Risk Factors

- Some key SGIG grantees did not participate in survey
- Implementation & operation practices not universal
 - Utility procedures & work rules differ
- Real-time data validation
 - Different interpretation of data flags
 - Data dependencies definable but vendor differences
 - Data comparisons require interface to operational systems
- Algorithms may not adapt to all systems
- Test systems & data difficult to access

