

Power Grid Simulator

Mani V. Venkatasubramanian Dave Anderson, Chuanlin Zhao Carl Hauser, David Bakken Anjan Bose

Washington State University Pullman WA

GridSim - Real Time Simulation of Power Grid Operation & Control

- Funded by USDOE
- Project team: Mani Venkatasubramanian (Project Lead), Anjan Bose, Dave Bakken, Carl Hauser, Chuanlin Zhao, Dave Anderson, Alex Ning, Ming Meng, Lin Zhang
- Simulate PMU like real-time responses of largescale power system including power grid dynamics and communication network

Project Objectives

Improve Reliability and Security of the Electric Power Grid by developing

- The new communications and information systems needed to support better automatic controls and operator support tools
- The new wide area automatic algorithms needed for detecting and mitigating oscillations and instabilities
- The new operator support tools, like next generation state estimators, for better human decision making

Project Tasks

- 1. Real Time Power Grid Simulation
- 2. Streaming Measurement Data
- 3. Data Communications Gridstat Middleware
- Oscillation Detection Wide Area Monitoring
- 5. State Estimation Real Time Modeling

Tasks 1 and 2

- Real Time Power Grid Simulation
 - Use commercial grade transient stability program – Powertech TSAT
 - Simulate a large real system in real time
 - Replace output file with streaming data
- Streaming Measurement Data
 - Streaming data needed at PMU locations
 - Measurement data in IEEE C37.118

FY12 Technical Objectives

- Demonstrate GridSim on 179-bus Western system model
 - 29 generators
 - 1577 PMUs
- Integrate Real-time TSAT, GridStat, State Estimation and Oscillation Monitoring engines for 179 bus system
- Demo at NASPI Denver meeting, June 2012
- Proof-of-concept
- No comparable tool available today

FY12 Risk factors

- Stability and numerical accuracy of TSAT
- Computational burden
- OpenPDC updates
- Validation of simulations

179 Bus Simplified WECC Model

179 Bus Example

FY13 Project Objectives

- Demonstrate GridSim on 3000 bus "WECC reduced model"
 - Real-time simulator including communication component
 - Real-time TSAT, GridStat, State Estimation and Oscillation Monitoring
- Identify industry partners for field demonstrations
- 14,000 bus WECC full model (FY14)

Washington State

50,000 bus Eastern grid full model (FY15)

Back-up Slides

Assumptions

- PMUs will increase and phasor measurements at high sampling rates will be ubiquitous
- The hardware technologies to move this data in large volumes and high speeds are available
- Power control devices (FACTS) will be deployed in larger numbers
- The software to manage and move this data is feasible but needs to be developed
- The software and algorithms for the next generation control and operation tools need to be developed

Summary: Tasks 1 & 2

- Measurement Stream from Simulated Power System
 - Static Data Generator
 - Measurement Generator
 - C37.118 Generator
- Substation Level Data
 - Each substation is a separate process
 - Time delays within substation neglected
 - Application algorithm at substation
- Tested on 179 bus system

Simulation Test Bed

Generating measurements of power system

- Static Database
 - Circuit Breaker Bus Section Database
 - Bus Section Equipment Database
 - Equipment Parameters Database
- Real-time Database
 - Currents
 - **Circuit Breakers**
 - **Bus Section Injections**
 - Voltages
 - Circuit Breaker Status

Overall Architecture

GridStat

- Data delivery middleware for Smart Grid
- Data plane components provide pub-sub model for data sources and applications
 - Multi-cast to use resources efficiently
 - Per-subscriber rate and latency management
 - Conserves network resources and simplifies applications
- Management plane handles resource allocation and subscription setup
 - Reserve multiple paths per-subscription
 - Provides authentication and authorization for access to published data streams

Oscillation Monitoring System

Substation level OMS and Control center level OMS. Light version of OMS for substations developed.