Baselining Studies and Analysis

(DOE-CERTS Internal Review)

Brett Amidan, M.S.
Thomas A. Ferryman, Ph.D. (retired)
Trenton Pulsipher, M.S.
Spencer Hays, Ph.D.

Pacific Northwest National Laboratory

brett.amidan@pnnl.gov
June 2012

Project Objectives and Relevance

Project Objectives

- Investigate power grid data (PMU and State Estimator Data), including, but not limited to, phase angle differences between site pairs, and mode meter and oscillation derived variables.
- Identify atypical events and characterize typical patterns.
- Recommend upper and lower limits for "normal" operation.

Relevance

- Increase understanding of the significance of phase angle differences and other variables as a metric of grid health.
- Increase grid reliability.
- Provide the ability to understand the nuances of the grid during varying operating conditions.

Major Technical Accomplishments to be Completed this Year

- PMU Baseline Effort
 - Calculate Mode Meter & Oscillation derived variables.
 - Improve data quality filters.
 - Identify atypical events using SitAAR.
- El Baseline Effort
 - Ingest 2011 data for 4 ISOs.
 - Calculate domain expert selected phase angle differences.
 - Use SitAAR to find atypical events.
 - Use Date/Time Model to predict normal operation limits.

Deliverables and Schedule for FY2012

- ► PMU Baseline Status Presentation October 2012
- PMU Baseline Report October 2012
- El Baseline Status Presentation October 2012
- ► El Baseline Report October 2012

Risk Factors Affecting Timely Completion of Planned Activities and Movement Through the R&D Cycle

- Phase angle pairs need to be identified. Input is needed from the participating ISOs.
- Application of Mode Meter and Oscillation calculations on PMU dst files is still pending.
- Interactions with domain experts will be needed to determine the effectiveness of the baselining activities.

Possible Follow-on Work to be Considered in FY2013

- Add Refinements and Capabilities to the SitAAR approach
 - Use Domain Experts to help refine data quality filters and analysis inputs to help the user better identify interesting atypical events (decrease falsepositives).
 - Add other derived variables to the processing to add insight.
 - Process significantly more data, to add more insight and understanding.
 - Move to a Classification based system, allowing for predictive capabilities and near real-time results.
- Add Refinements to the Date/Time Model
 - Consult with Domain Experts to identify actual variances from normal operation.
 - Correct possible biases in the model estimates.
 - Use this information and possible other modeling capabilities to decrease false-positives.

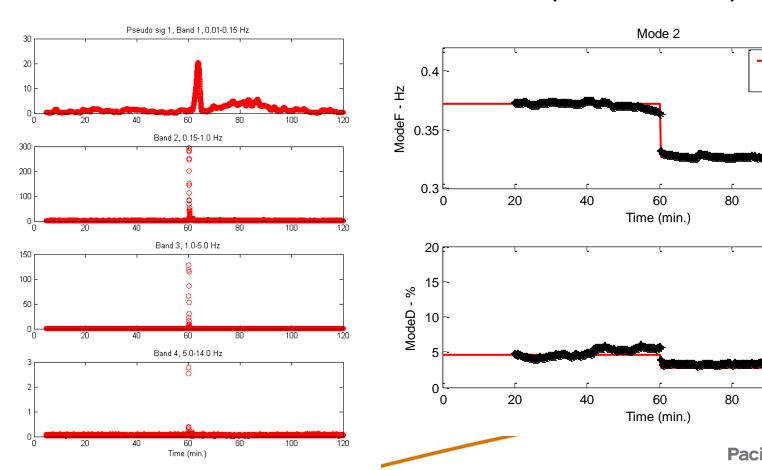
PMU Analyses Using SitAAR (Situational Awareness and Alerting Report)

- SitAAR has been applied to 9 months of PMU data looking at Voltage, Current, Phase Angle Differences
 - Initial results shown to Domain Experts interesting events and data quality issues were revealed.
 - Resulted in improvements made to the Data Quality.
- Next Steps
 - Add Oscillation and Mode Meter Data.
 - Process more data.
 - Review refined and improved findings with domain experts.

Oscillation Detection and Mode Meter Progress

Actual

100


100

120

120

Estimate

- We've got the Matlab code working on example data (see plots below).
- In the process of applying it to .dst files (raw PMU data).

Analysis Methods for State Estimator Data

- Focus analyses on Phase Angle Differences between two sites.
- Method 1 SitAAR approach to study typical patterns and atypical events.
 - Applied to PMU data.
 - To be applied to latest state estimator data.
- Method 2 Date/Time Model
 - Predict phase angle for each pair for each 3-hour period in 2011. Refinements will move this to 1-hour periods.
 - Calculate candidate statistical Quality Control limits for monitoring phase angle pairs.
 - Could lead to a near-real-time monitoring and alerting system to:
 - Alert the operator if the phase angle for pairs of sites appears to be notably unusual.
 - Inform the operator of specific pair(s) identified.

Phase Angle Difference Analysis of Eastern Grid State Estimator Data

- Calculating Angle Difference from the same ISO
 - Angle data recorded at the same time
 - Straight forward calculation

			Angle1.ISO1-
	Angle1.ISO1	Angle2.ISO1	Angle2.ISO1
00:00:00	-35.385	-37.810	2.425
00:00:30	-33.148	-35.565	2.417
00:01:00	-32.478	-34.918	2.440
00:01:30	-32.243	-34.677	2.433
00:02:00	-32.119	-34.547	2.428

- Calculating Angle Difference from different ISOs
 - Angle data NOT usually recorded at the same time
 - Complicated calculation

	Angle1.ISO1	Angle3.ISO2	Difference
00:00:00	-35.385	NA	?
00:00:07	NA	-34.850	?
00:00:30	-33.148	NA	
00:02:00	-32.119	NA	?
00:02:30	-32.634	NA	?
00:03:00	-33.080	NA	?
00:03:06	NA	-34.850	?

SOLUTION:

FIDUCIARY METHOD

Fiduciary Method

Calculate Angle Differences between Angles from Different ISOs by Using Other Angles Both ISOs Have in Common

Angle 1 ISO 1

	Angle1.ISO1	FidAngle1.ISO1	Difference
00:00:00	-35.385	-12.301	-23.085
00:00:30	-33.148	-10.247	-22.901
00:01:00	-32.478	-9.275	-23.202
00:01:30	-32.243	-9.170	-23.073
00:02:00	-32.119	-9.419	-22.699
00:02:30	-32.634	-9.964	-22.671
00:03:00	-33.080	-10.202	-22.879
00:03:30	-33.480	-10.462	-23.019

Angle 3 ISO 2

	Angle3.ISO2	FidAngle1.ISO2	Difference
00:00:07	-34.850	-27.168	-7.682
00:03:06	-34.850	-27.307	-7.543
00:06:06	-34.883	-27.738	-7.145

Angle 1 ISO1 – Angle 3 ISO 2

	Difference
00:00:30	-15.647
00:01:00	-15.779
00:01:30	-15.721
00:02:00	-15.587
00:02:30	-15.619
00:03:00	-15.754
00:03:30	-15.955

Calculating Phase Angle Difference Using 3 or more Fiduciaries – Example

Results from multiple fiduciaries summarized by calculating the median at each time period.

(This reduces any problems introduced due to having to use fiduciaries)

Date/Time Modeling

- For each of the 54 pairs recommended by PJM,
 - Calculate angle differences for every State Estimator data point (every 5-minutes for 15 months)
 - Fit a linear model based on date/time:
- Version 0.1 (fit based on 15 months of data)

```
EstimatedAngle = Overall Mean + SeasonFactor<sub>(i)</sub> + DayOfWeekFactor<sub>(j)</sub> + TimeOfDay<sub>(k)</sub> + error<sub>(i,j,k)</sub>
```

```
where: i = 1, 2, ..., 13; j = 1, 2, ..., 7; k = 1, 2, ..., 8
```


► Version 0.2 (fit based on moving window of 4 weeks)

```
EstimatedAngle = Overall Mean + DayOfWeekFactor(j) + TimeOfDay(k) + error(j,k)
```

where:
$$j = 1, 2, ..., 7$$
; $k = 1, 2, ..., 24$

Version 0.2 vs Version 0.1

Revised method significantly improved phase angle difference predictions. Further testing and revisions are necessary, to improve and quantify its ability to predict.

Progress Summary

- Situational Awareness Analysis of PMU Data
 - 9 months of PMU data processed and analyzed, including phase angle differences.
 - Results shown to domain experts, iterations performed on data to reduce data quality issues.
 - In the process of adding oscillation and mode meter data.
- Analysis of State Estimator Data
 - 9 months of State Estimator Data processed from 3 ISOs.
 - Fiduciary Method created to calculate differences in phase angles from different ISOs.
 - V0.1 Date/Time Model created to determine prediction limits for future phase angle differences.
 - V0.2 Date/Time Model using a moving window of 4 weeks (8 weeks also tried).
 - Additional refinements have been identified.

Conclusions

- Analysis progress continues and looks encouraging.
- SitAAR approach finding ways to mitigate data quality issues and allow the user to focus more on actual grid phenomena and better monitor the grid.
- ► SitAAR approach finds interesting grid behavior and provides insight to the domain experts.
- ► V 0.2 Date/Time prediction model showing promise in effective use of phase angle pair difference data.
- Additional R&D is necessary to mature the promising nature of the work to date.

