Measurement Based Stability Assessment

DOE/CERTS Transmission Reliability R&D Internal Program Review Meeting

June 12-13, 2012

Washington DC

Presenter: Dan Trudnowski, Montana Tech
Participants:
Dan Trudnowski
John Pierre, U of Wyoming
Ning Zhou, PNNL
Louis Scharf, Consultant

Project Objective and Application

- Objective: Develop, test, and refine algorithms to automatically estimate oscillations from PMUs in real time.
 - estimate modal frequency, damping, and shape
 - estimate mode-estimation performance and validation indices (e.g., error bounds)
 - detect forced oscillations and identify the cause(s) of such oscillations
 - collaborate with power-industry partners to test potential algorithms
 - assist in the WECC system tests

Application

Real-Time Situational Awareness based upon actual system observations

Project Overview

Time line:

April 2006 thru April 2013

Participants:

- Dan Trudnowski, Montana Tech
- John Pierre, University of Wyoming
- Louis Scharf, Colorado State University (Retired)
- Ning Zhou, PNNL (funded independently)
- Lots of graduate students

Collaborators:

Bonneville Power Administration

Advisors

- John Hauer, PNNL (Retired)
- Bill Mittelstadt, BPA (Retired), WECC

Background

	Frequency	Damping
Mode	(Hz)	(%)
1	0.51	7.80
2	1.19	3.40
3	1.22	3.30

0.51-	·Hz	Mode	Shape
-------	-----	------	-------

	$Angle(u_{i,k})$	Amplitude
Gen	(degrees)	$ u _{i,k}$
3	-180	1.00
4	-180	0.84
1	0	0.42
2	0	0.31

Background – cont.

Background - Damping

Dynamic Response Types

Algorithm Classes

- Oscillation Detector (OD): Estimates RMS Energy in specified frequency band.
 - Very fast
 - Very robust
 - Operations and Engineering tool
- Mode Meter (MM): Estimates a mode's frequency, damping, and shape. [1].
 - Requires minutes of data under ambient conditions
 - Requires seconds of data under transient
 - Robust
 - Operations and Engineering tool
- Spectral Estimator (SE): Estimate the spectra of a signal.
 - Requires minutes of data for averaged spectra
 - Requires seconds of data for single window fft
 - Very robust
 - Operations and Engineering (Lots of data management and visualization)
- Ringdown Estimator (RE): Estimates a mode's frequency, damping, and shape. [1].
 - Only works on transient data, requires seconds of data.
 - Not robust. Easy to fool (e.g., multiple switchings)
 - Engineering tool

[1] IEEE/PES Task Force on Electromechanical Mode Estimation

Research Approach

Tasks:

- 1. Signal processing research
- 2. Conduct and analyze field tests
- 3. Develop and test appropriate automated code

Accomplishments to Date Signal & Systems Research

Red = Current or past year

Mode-meter algorithms

- YW = Yule Walker
- YWS = Yule Walker Spectral
- N4SID =Sub-space ID
- R3LS = Regularized Robust Recursive Least Squares
- Mode energy calculations for automated application
- Tested Frequency Domain (SYSFIT) methods for estimating modes
- Evaluated "FFT" algorithms
- R3ML = Regularized Robust Recursive Maximum Likelihood
- MTF = Multi-Channel Transfer Func. simultaneous mode and shape
- Simultaneous mode and forced oscillation methods

Performance and Validation Indices

- Confidence bound estimation (Bootstrapping) for YW, YWS, and N4SID.
- Direct Confidence bounds from RML
- Whiteness testing

Accomplishments to Date Signal & Systems Research

Red = Current or past year

Ringdown Estimators

- Compared BPA/PNNL Prony analysis with Matlab-based Prony
- Algorithms to automatically detect a ringdown (Zhou)

Mode Shape

- Fundamental calculations for extracting mode-shape information.
- 3 algorithms for estimating the mode-shapes.

Forced Oscillations

- Fundamental characteristics of forced oscillations.
- Simultaneous mode and forced oscillation methods.

Other

- Magnitude and Phase Response Estimates Standard Deviation
- RMS Energy filtering

Accomplishments to Date Application Development

Red = Current or past

- Expert system applications (patent pending)
 - Developed expert system frameworks
 - Conducted study to map bootstrapping to confidence estimates of modes.
 - "Results Selection" algorithm for selecting from multiple modemeter solutions
 - Pseudo signals to improve Mode Meter accuracy
 - Determined under what conditions each algorithm provides the best results (Monte Carlo and 2009 probing tests).
 - To be expanded to 2011 and 2012 probing tests.

Accomplishments to Date Application Development

Red = Current or past year

- Supported EPG's code implementation
- Installed prototype mode-meter at BPA for 2010-12 operating season
- Installed prototype Ringdown estimator at BPA for 2011-12 operating season

Accomplishments to Date WECC Probing Tests

Red = Current or past year

- Goal: evaluate and test algorithms and concepts on real-life data
 - Designed methodology to construct multi-sine optimized PDCI probing signals
 - Supported and analyzed Aug. 2006, Aug. 2008 tests
 - Supported and analyzed 2009 season tests (14 tests)
 - Supported and analyzed 2011 season tests (16 tests)
 - Analyzed effects of probing on mode-meter performance
 - Currently conducting 2012 season tests

Forced Oscillations

- Many causes, e.g.:
 - Generator rogue controller in limit cycle
 - Pulsing loads
- NOT A SYSTEM INSTABILITY
- Forced oscillations very common
- Can be very severe: November 30, 2005
- Fundamental Goals: Develop signal processing algorithms that
 - Identify forced oscillations and distinguish them from system modes.
 - Identify the root location and cause of the forced oscillation.

Forced Oscillations (FOs)

Fundamental Knowledge (On-going research)

Research Questions

- What are the fundamental causes?
 - Generator controls and loads.
 - Real power vs reactive power.
 - Pole slipping.
- How do FOs propagate thru the system?
 - Voltage vs Current.

Study approach

- Fundamental systems analysis.
- miniWECC simulation and analysis.

What we're learning

- FOs typically are harmonic with common shape.
- FO magnitude points to source.
- Voltage/Current points to source.

2010 WECC Example

Example System Event

270

Observations

- OD and SE indicates widespread oscillation matching a known system mode.
- Shape matches mode baseline.

Example Forced Oscillation

Observation

- SE contains harmonics
- OD and SE dominated by one generator site indicating FO source
- Shape is unique to a FO

Simultaneous Mode and FO Estimation

- Traditional Mode Meters greatly underestimate the mode damping and do not estimate the forced oscillation.
- New Mode Meter algorithm more accurately estimates the mode and forced oscillation simultaneously (patent pending).

Example Simulation

- Alberta Mode: 0.372 Hz, 4.67%
- Forced oscillation via generator limit-cycle (0.37 Hz, 0.2 MW)

	Frequency	Damping Ratio
True Mode	0.372 Hz	4.67 %
Traditional Mode Meter	0.370 Hz	0.83 %
New Mode Meter	0.373 Hz	4.19 %

Recursive Maximum Likelihood (RML) with Error Bounds

- Algorithm that
 - estimates mode frequency and damping
 - directly estimates mode variance
- Present to operator a near real-time estimate of mode with error bounds
 - Estimate of confidence in the mode estimates
- Note on Speed! Designed to replace bootstrapping for use in online real-time environment

RML with Error Bounds

RML with Error Bounds – Simulation Results

- 500 Monte Carlo Trials
- Probing from 40 to 70 minutes
- True values in RED
- Mean and region of one standard deviation given
- Mean lines up with true
- Standard deviation is low

RD&D Stage

Project has components ranging from Theoretical Study to Pre-commercial. For example:

- Theoretical Study:
 - Signal processing research.
 - Forced oscillations research.
- Prototype/Field Demonstration
 - Real-time testing at BPA for Mode Meter and Ringdown Estimation
- Pre-commercial
 - WISP project Developing production-grade software to be integrated with commercial vendors and installed in control centers in WECC.
 - YW, R3LS, Mode-Meter Expert System
 - Spectral Estimation
 - Oscillation Detection

FY12/13 Plans

- Continue fundamental signal processing research
 - Continue focus on fundamental understanding of forced oscillations
 - Continue testing methods for forced oscillation ID
 - Continue focus on performance and validation indices
- Continue to support WECC probing tests
- Continue application development
 - Automated expert system use

Testimonials since 2006

- ~40 publications in peer-reviewed journals and proceedings.
 - 2009 IEEE PES Power System Dynamic Performance Committee's prize paper.
- Two patents pending.
- Helped organize/conduct IEEE Task Force (special publication).
- WISP development project.

Questions?