Science Highlights

You are here

RSS

Each year, scientists with the Office of Science, at our national laboratories, and supported by the Office of Science at the nation’s colleges and universities, publish thousands of research findings in the scientific literature. About 200 of these are selected annually by their respective program areas in the Office of Science as publication highlights of special note.

For the archive of past publication highlights, click here.

February 19, 2019
A team working at the DIII-D National Fusion Facility discovered that external 3-D magnetic fields drive strong distortions in high-pressure plasmas that help suppress bursts of heat in fusion reactors.
Steady as She Goes
Scientists tame damaging edge instabilities in steady-state conditions required in a fusion reactor.
February 19, 2019
Researchers used a novel transverse configuration to compress a silicon target with an optical laser (green). X-ray diffraction patterns are collected in transmission on Cornell–SLAC Pixel Array Detectors.
Silicon and a State of Shock
A novel experimental geometry at the Linac Coherent Light Source reveals how silicon responds to shocks similar to those in a planet's core.
February 19, 2019
A new approach collects light emitted by plasma due to interaction with an injected neutral deuterium beam and transmits the light to spectrometers, by tuning the spectrometers to the rest wavelength of a visible deuterium spectral line.
Not All Ions in Tokamaks Go with the Flow
Spectroscopic measurements reveal that main ions flow much faster than impurities at the edge of fusion-relevant plasmas.
February 17, 2019
Contour plot of a cross-section plane around the magnetic islands (depicted by dashed lines), showing the variation of the electrostatic potential associated with the magnetic island.
New Model Sheds Light on Key Physics of Magnetic Islands that Can Halt Fusion Reactions
Surprisingly, a magnetic island does not necessarily perturb the plasma current in a dangerous way and destroy fusion performance.
February 17, 2019
Rapidly accelerating kink instability (arch shape) of a plasma jet produces an effective gravity that causes “ripples” (seen on bottom of the arch). The ripples choke the jet at which time a burst of 6 kilovolt X-rays is observed.
High-Energy X-Ray Bursts from Low-Energy Plasma
Scientists discover why solar flares produce X-rays; a few electrons avoid collisions and accelerate to produce a microsecond burst.
February 12, 2019
Adjacent computer-assisted design models of the Pinnacle Engines opposed-piston gasoline engine.
Pinnacle Engines Develops Efficient, Low-Emission Gasoline Engine Using Supercomputing
Researchers modeled design concepts for innovative, opposed-piston engine on Titan supercomputer.
February 11, 2019
X-ray beam induces photo-ejection of an electron from (left) hydrogen and (right) helium.
Measuring the Impossible: X-ray Photoelectron Spectroscopy of Hydrogen and Helium
Two most abundant elements in the universe, hydrogen & helium, were previously thought to be impossible to measure by X-ray photoelectron spectroscopy
February 11, 2019
Researchers collected X-ray images from rock samples (left) showing the element distribution. The chemical maps (right) reveal fine-scale chemical and mineralogical variations that weren’t captured in previously published analyses.
Early “Fossils” Formed by Tectonics, not Life
The 3.7-billion-year-old structures were considered the first evidence for life on the planet; new evidence suggests differently.
February 11, 2019
A scanning electron microscope image of a single-crystal diamond cantilever. This tiny device allows scientists to exert control over a quantum system (μm = micrometers).
Taking Diamond Qubits for a Spin
Scientists use implanted silicon ions & electricity to increase the spin time of quantum bits, moving closer to the tech needed for quantum networks.
February 11, 2019
The drawing shows the prospective activation of a nitrogen molecule (blue spheres) held in the middle of the catalyst. Light is harvested (red) and electrons migrate (blue arrows) to ultimately make the nitrogen receptive to bonding with hydrogen.
How Sunlight Energizes Electrons to Break Nitrogen and Form Ammonia
Molybdenum-based complex harvests light to make inert nitrogen gas reactive to potentially become part of fertilizer.
February 11, 2019
Researchers uncovered the secret behind designing better-performing electrode surfaces (electrocatalysts). The power density curves show the newly designed catalyst (red curve) outperforms a similar catalyst that is not optimized.
Newly Discovered Design Rules Lead to Better Fuel Cell Catalyst
Optimized oxides made from common metals use less energy and show the potential of new design approach.
February 11, 2019
New pictures of Photosystem II show different ways the protein complex shifts and stretches as it splits water. This image shows the water-oxidizing complex in the last stable state before the water splits.
Atomic Snapshots of Photosynthesis
Scientists catch details with atomic resolution, potentially helping design systems to use sunlight and water to produce fuels.
February 10, 2019
The surrounding tetrahydrofuran solvent deforms the bonding electron density around a sodium solute. The sodium cores are blue spheres; the valence electrons' density is represented as a transparent white surface.
Chemicals Can Change Their Identity, Thanks to the Liquids Where They Reside
Far from being a mere spectator, solvents can play a larger role in chemical reactions, likely including those used in energy storage and biology.
February 10, 2019
Scientists use high-level computational chemistry methods to predict reactions involved in purifying water. Researchers compared five computational methods to determine the benefits and limitations of each in studying purification-based reactions.
How to Best Predict Chemical Reactions of Contaminants in Water
Scientists determine the accuracy of computational methods used to study the sulfate radical approach to purifying water.
February 9, 2019
Scientists are showing how energy moves (green) or doesn’t (red) along nanoparticle chains. The artwork appeared on the cover of the Journal of Materials Chemistry C.
Too Close for Comfort: Nanoparticles Need Some Space to Transfer Energy
Particle crowding interferes with moving energy efficiently along promising molecular chains.
February 5, 2019
Polymer fibers (brown) form pores within polyacrylamide hydrogels. Inside one of these tiny pores, water molecules (red, white) exhibit a uniform behavior, but the ions act differently depending on how close they are to the polymer fibers.
Hydrogels Change Water and Solute Dynamics
Hydrogel pores can modify the molecular-level motion of water and dissolved ions.
February 5, 2019
Researchers use extreme ultraviolet pulses (fuchsia line) to determine how visible light (blue line) causes interfacial hole (h ) transfer from iron oxide (Fe2O3) to nickel oxide (NiO), a hole collection layer found in hybrid perovskite solar cells.
Controlling Charge Flow by Managing Electron Holes
Researchers watch and measure in real time charge dynamics between layers of oxide materials, offering insights into solar cells.
February 5, 2019
In water (red and white structures), the direct interaction between graphene (gray) and an ion (yellow) causes the ion to adsorb to the surface. The green and blue lines represent the reflected light pulses during ultraviolet spectroscopy.
The Subtle, but Significant, Role of Surfaces in Ion Stickiness
Direct interactions dominate ion adsorption to aqueous graphene, a process central to vital processes in energy technology.
February 4, 2019
Productivity of vegetation is linked to spatial position across the tundra landscape.
Controls on Nitrogen Nutrient Availability in the Arctic Tundra
Soil moisture is key to determining plant growth and nutrient cycling in complex tundra landscapes.
February 4, 2019
Computer model offers detailed view of water cycling and complex Earth system dynamics.
Coupling Computer Models Shows Interactions among River Water, Groundwater, and Land Surfaces
Computer model offers detailed view of water cycling and complex Earth system dynamics.
February 1, 2019
Pictures of three natural organic matter fractions extracted from sediment show the fractions are water extractable (MQ-SPE), acid-soluble pyrophosphate extractable (PP-SPE), and acid-insoluble pyrophosphate extractable (PP >1 kD).
New Approach Gets Better View of Carbon Deeper Underground
Characterizing carbon stored in deeper sediments below soils is critical for understanding the stability and dynamics of Earth’s carbon pool.
February 1, 2019
The Thwaites Ice Shelf in West Antarctica is one of the largest regional contributors to sea level rise.
Near-Term Ocean Warming Around Antarctica Affects Long-Term Rate of Sea Level Rise
Scientists investigate a threshold for rapid ice-sheet degradation in the West Antarctic Ice Sheet.
February 1, 2019
Researchers studied molecular data on phages to discover how the viruses affect environmentally important bacteria in nature.
Viruses Must Overcome Challenges to Infect Bacteria in Nature
Molecular studies show phage-host interactions are more complicated than most laboratory studies suggest.
January 30, 2019
This event display shows the result of a muon neutrino candidate interacting inside the MicroBooNE detector at Fermilab. Cyan shows the energy deposited in electromagnetic shower-like topologies. Yellow shows energy deposited in other line-like topologies
MicroBooNE, Machine Learning, and Liquid Argon
The MicroBooNE experiment demonstrates the use of machine learning to interpret images made by a liquid-argon particle detector.
January 30, 2019
Neutrinos entering the MINERvA detector interact with the detector's atoms, generating new particles before fleeing the scene. The MINERvA experiment used a new investigative technique to better trace those fleeing neutrinos that kicked everything off.
CSI: Neutrinos Cast No Shadows
New crime scene investigation technique offers a hard look at the traces that particles leave before fleeing the scene.