

Modular Hybrid Solid State Transformer (H-SST) for Next Generation Flexible and Adaptable Large Power Transformer (LPT)

TRAC Program Review

US Department of Energy, Office of Electricity

Presented at Oak Ridge National Laboratory

Oak Ridge, TN

Professor Alex Q. Huang Dula D. Cockrell Centennial Chair in Engineering Director, Semiconductor Power Electronics Center (SPEC) University of Texas at Austin aqhuang@utexas.edu

8/13/2019

Project Overview

- Project summary:
 - Develop and demonstrate a modular Hybrid Solid State Transformer (H-SST) for next generation Flexible and Adaptable large power transformer (LPT).
 - Demonstrate advanced control functions of the H-SST that is currently not available in traditional transformers.

- Total value of award (federal + cost share): \$2.16m(\$1.73m/\$433k)
- Period of performance: 3/18/2019-3/217/2021
- Project lead and partners

Project Plan

Fig. 18: Organization and task Structure of the proposed project

Fig. 19: High level schedules of each task

Need for advanced control function and flexibility

- Requires a wide spectrum of products for power quality improvement (SVC, active filter, voltage regulator, DVR, etc.)
- Strong coupling and won't isolate harmonics/other disturbances
- Not friendly for integration of renewable energy source (DC-typed sources need more conversion stages, synchronization), EV, electronic load

[1] Electricity grid simple- North America" by United States Department of Energy, SVG version by User:J Jmesserly - http://www.ferc.gov/industries/electric/indus-act/reliability/blackout/ch1-3.pdf Page 13 Title:"Final Report on the August 14, 2003 Blackout in the United States and Canada" Dated April 2004. Accessed on 2010-12-25. Licensed under Public domain via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Electricity_grid_simple-_North_America.svg#mediaviewer/File:Electricity_grid_simple-_North_America.svg

Power Electronics Solutions: Solid State Transformer

Xu She, Alex Huang, "Review of Solid state Transformer in the Distribution system: From components to Field application," in Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, 2012, pp. 4077-4084.

Previous SST Prototypes: Distribution grid focus

7.2 kV single phase transformer for residential node (US market)

SST based on Direct AC-AC Conversion (Type A-2)

Q. Zhu, L. Wang, A. Huang, K. Booth and L. Zhang, "7.2 kV Single Stage Solid State Transformer Based on Current Fed Series Resonant Converter and 15 kV SiC MOSFETs," in *IEEE Transactions on Power Electronics*.

Measured Efficiency (MV AC- LV AC)

Input: 7.2 KV Output: 240V

60 Hz transformer efficiency

Conclusion: single phase SST is approaching similar LFT efficiency! Challenge: How to sale this to transmission application

Hybrid SST: trade-off between power level and functionality

Preferred Hybrid-SST Solution: Secondary side IPOS configuration

Advanced Grid

Research

OFFICE OF ELECTRICITY US DEPARTMENT OF ENERGY

HSST Control Strategy: Constant Frequency with Single Phase-Shift

Simulation Results (1): Power from HV Side to LV Side

- Power from HV side to LV side, full power, 500kW
- Control: constant frequency (15kHz) with constant phase shift (9.93°),

- Power from HV side to LV side, half power, 250kW
- Control: constant frequency (15kHz) with constant phase shift (0.5*9.93°),

Simulation Results (2): Power from HV Side to LV Side

- Power from LV side to HV side, full power, 500kW
- Control: constant frequency (15kHz) with constant phase shift (-9.0°),

- Power from LV side to HV side, half power, 250kW
- Control: constant frequency (15kHz) with constant phase shift (-0.5*9.0°),

HSST: Standardized Design for Multiple LPT Constructions

• 6 MVA 138kV/35 kV LPT based on the 500 kVA H-SST.

•	Modular	configurations	utilized to	achieve	various 13	38 kV L	PTS

LPT Voltage	138kV/115kV	138kV/69 kV	138kV/35	138kV/4
			kV	kV
Input configuration	Series and parallel	Series and	series	series
	_	parallel		
Desirable H-SST input voltage	20 kV	20 kV	20 kV	20 kV
Number of H-SST at the input per phase	4+4+4=16	4+4=8	4	4
Output configuration	Series	Series	series	parallel
Desirable H-SST output voltage	4 kV	5 kV	5 kV	4 kV
Number of H-SST at the output per	16	8	4	4
phase				
Minimum LPT power rating	24 MVA	12 MVA	6 MVA	6 MVA

7.2kV/60A Austin SuperMOS (1)

Picture of the 7.2kV/60A Austin SuperMOS

Turn-off waveform at 5kV/40A

Features:

- High blocking voltage with low on-resistance (<200 mΩ)
- High speed switching (dV/dt >120kV/us) with low capacitances
- Simple to drive and easy to be parallel
- ZVS switching achievable
- Integrated gate driver DESAT protection, UVLO protection, and Over temperature protection
- Integrated isolated power supply with 20kV insulation capability

Turn-off waveform at 4kV/80A

7.2kV/60A Austin SuperMOS (2)

- I-V curves of the 7.2kV/60A Austin SuperMOS @RT
- Conduction resistance of the 7.2kV/60A Austin SuperMOS under different drain-to-source current @RT

7.2kV/60A Austin SuperMOS (3)

Output charge and output capacitance of the 7.2kV Austin SuperMOS

Figure of Merit (FOM) of SiC unipolar devices

Parameter	Value	Parameter	Value
Rated Voltage	7.2kV	E _{on} @5kV/10A	15.5mJ
Rated Current	60A@100°C 90A@25°C	E _{off} @5kV/10A	1.2mJ
R _{dson}	<200 mΩ @25°C	E _{off} @5kV/40A	1.8mJ
Q _{oss} @5kV	1584nC	C _{oss} @5kV	159pF

Primary Side Full Bridge Setup

- 3kV film capacitors are used in series to construct the 5kV dc link.
- DC+, DC- and the midpoint cable entry points are located on the bottom layer of the PCB
- Dimensions are 262mm x 240mm x 168mm

Gate Driver Power Supplies with High Isolation Voltage

(+

- 10kV isolation
- Series LLC resonant circuit
- Secondary side circuit included inside integrated module
- Primary winding is a HV wire that loops around 4 toroidal cores included inside 4 SuperMosfet modules of the primary full bridge
- Transfer capacitance = 2pF
- Input = 15Vdc; Output = 24V dc
- High insulation capability realized by 3D printed bobbin which separates the primary hv wire and secondary winding.
- Switching frequency = 235kHz

Low Voltage Side Power Stage

- Secondary Side dimensions : 400 x 270 x 130mm
- Includes Interface Board, which allows for optical control from the controller, thus achieving high level of isolation
- Interface Board also responsible for
 - Output Contactor Control
 - Sensor signal conditioning
 - Driver Fault detection and shutdown

High-power Medium-frequency Transformer

Version 1 transformer

- Core Material:FINEMET®FT-3TL
- 150 * 125 * 170mm
- Turn ratio: 49:7
- Magnetic inductance_HV/LV: 276.5mH/5.88mh
- Leakage inductance_HV/LV: 78.3uH/1.86uH

Transformer insulation design and Partial discharge test

Insulation sheet

Dielectric Breakdown 20,292 volts

Dielectric Strength -1194 volts/mil

Heat Shrink Thin Wall Tubing

Dielectric Strength>20kV / mm

PDIV is 2.5kV,

Improved design for higher insulation voltage is needed.

AC RMS 2.5kV 60HZ

US DEPARTMENT OF ENERGY

100 kVA DABSST Converter 3D drawings (Alpha Design)

- Tentative Arrangement yields an SST of dimensions : 1250 x 270 x 170 mm
- However, since the LFT is considerably bigger (1575 x 1524 x 2032 mm), the SST should be able to fit in the LFT enclosure itself (drawing on next slide)

Preliminary MV Test Result (Vin=3.6 kV/Vout=103V)

DABSST operation with 3.6kV input (blue 2kV/div.) and 103V output (green 50V/div.) and grid current (red 1A/div.).

Transformer primary voltage (blue), primary winding current (red) and secondary voltage (green).

Estimated Loss Breakdown and Efficiency

DAB SST total loss @0.5kV, 62.5kW output

TOTAL 1509W

Inductor HV rectifier HV Conduction HV Switching LV switching LV Conduction

• LFT efficiency estimated based on 500 kVA prototype from Control Transformer

500kVA HSST drawing

- 500 kVA LFT order in place
- 100 kVA DABSST is 80% complete
- DABSST modeling and control finished
- Next step
 - Contract in place for all subs (task 1)
 - Line frequency model of the DABSST (Task 5)
 - System level modeling of LPT (Task 5)
 - HSST monitoring strategy (Task 4)
 - Improved isolation capability of DABSST transformer (Task 2)

DELIVERABLES (*assume 3/18/2019 start date)				
Deliverable	Planned Completion Date	Status (8/2019)		
Alpha 100 kVA SiC DABSST	9/30/2019	80%		
Beta 100 kVA SiC DABSST	3/31/2020	0%		
500 kVA Hybrid Solid State Transformer	9/30/2020	50%		
Monitoring and failure/fault detection platform	12/31/2019	Started, 10%		
Control, modeling and simulation analysis of LPT based on H-SST	12/31/2020	Started, 10%		

