

Evaluation of Grid Equipment for Improved Resilience

TRAC Program Review

US Department of Energy, Office of Electricity

Presented at Oak Ridge National Laboratory

Oak Ridge, TN

Dr. Bjorn Vaagensmith, Power Systems Researcher Idaho National Laboratory

Bjorn.Vaagensmith@inl.gov

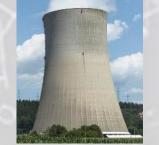
August 13, 2019

Project Overview

- Investigate methodologies and best practices for prioritizing electric power grid equipment improvements
 - Best return on investment for resilience improvements
- Total award: \$500k
- Period of performance: Sept 15, 2017 December 31, 2018
- Bjorn Vaagensmith (PI), Jesse Reeves, and Carol Reid (PM)

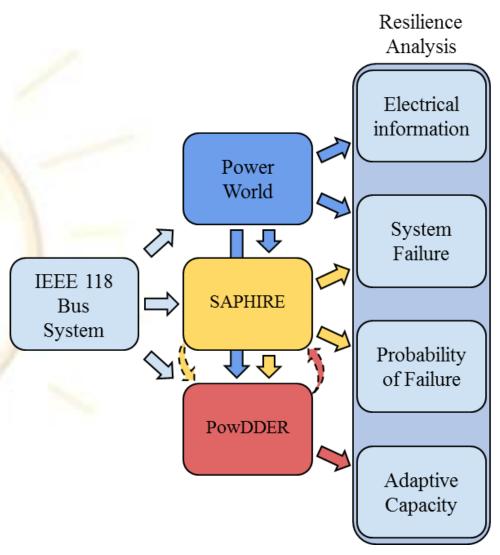
Context concerning the problem being addressed

- Power grid operations are critical to modern society
 - Economics
 - Culture
 - Maintain livable conditions
- Understanding the most important power grid components can help researchers and utilities create a more resilient power grid

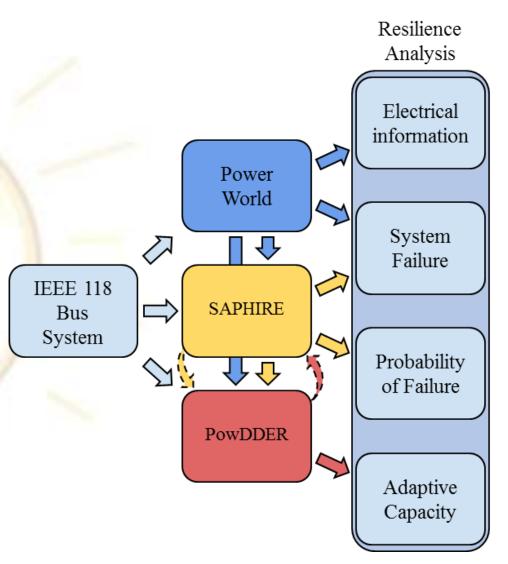


State of the art approaches for addressing the problem

- Utilities focus on power flow studies to prevent outages and fast response to failed equipment
- Nuclear regulatory commission uses probabilistic risk assessment (PRA)
- PRA used to predict the most likely sequence of events that result in a power outage
- Resilience studies focused on microgrid architecture, control algorithms, and distributed generation



Uniqueness of the proposed solution


- Combine power flow, PRA and resilience metrics
- Iterative relationship between Power World and SAPHIRE & PowDDER
- Programs modeled outcomes for:
 - Electrical information
 - System Failure
 - Probabilities of Failure
 - Adaptive Capacity (Resilience metric)

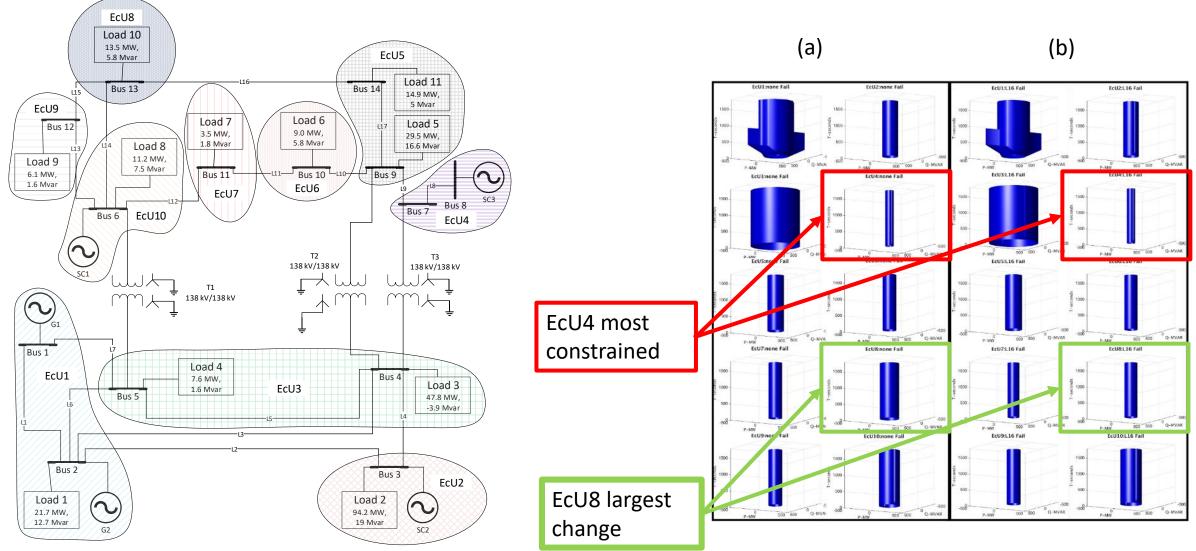
Technical explanation of the proposed approach

- PowerWorld:
 - Contingency analysis → SAPHIRE
 - Power flow and system information → PowDDeR
- SAPHIRE:
 - Likelihood of specific components cause system failure
 - Most likely failure
 scenarios → PowDDER
- PowDDER:
 - Largest changes in adaptive capacity
 - Potential power pinch points

Significance: data mining form OE-417 vs SAPHIRE simulation

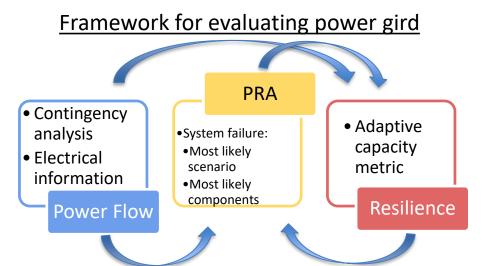
OE-417 data: Significantly contributing component failure associated with high wind

Component	2017	2016
Power Lines	59	29
No Data Found	3	2
Transformer	1	1

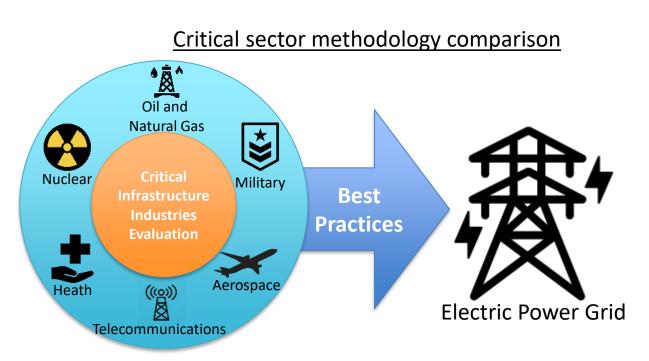

SAPHIRE IEEE 14 bus model: Generic component results unavailability/hour (UA/h) that contributed to system wide failure

Group (n-1)	Nominal, Single Bkr (UA/h)	Nominal, Bkr & Half (UA/h)	HW, Single Bkr (UA/h)	HW, Bkr & Half (UA/h)
Generators	5.97E-08	3.63E-08	5.97E-08	3.63E-08
Synchronous Condenser	1.38E-07	9.89E-08	1.38E-07	9.89E-08
Transformer	1.58E-04	5.35E-05	3.78E-04	3.25E-04
Powerlines	1.47E-03	1.61E-04	2.37E-03	1.06E-03

- The Electric Emergency Incident and Disturbance Report (OE-417) form for high wind related events filtered based on
 - Loss of 300 MW or more
 - Loss of 50,000 customer-hours or more
 - **Powerlines** and **transformers** are most associated component with large outages
- High wind event on the IEEE 14 bus system modeled in SAPHIRE
 - Powerlines and transformers exhibit the highest unavailability/hour (UA/h) that contributed to system-wide failure

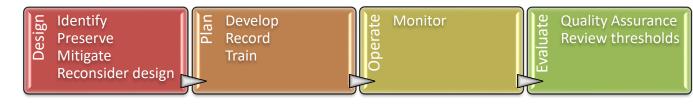


Significance: PowDDeR results for (a) nominal and (b) high wind



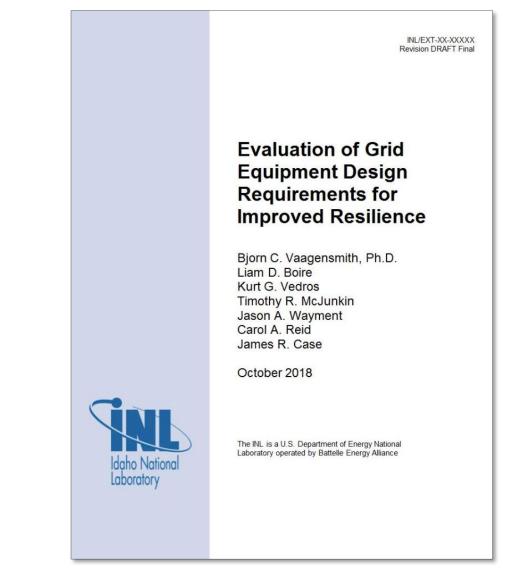
IEEE 14 bus segmented into economic units EcU1-10

Specific research questions being addressed



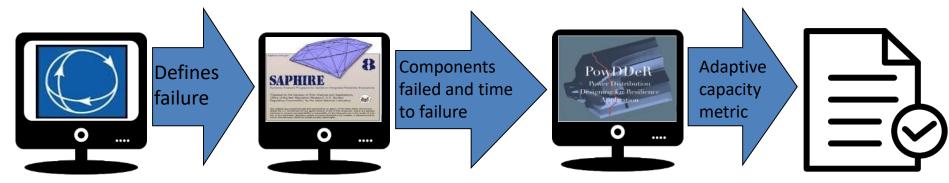
- Which component improvements in the power grid will provide the biggest benefit to resilience?
- What system upgrades provide the best improvements to resilience?

• What best practices from other critical infrastructure sectors can be leveraged to improve power grid resilience?


Common Best Practices Identified

Project schedule, deliverables, and current status

- Budget expended: \$500k
- Deliverables:
 - Final report
- Project status: completed



Next steps

• Partner with Utilities for further modeling framework validation

DUKE ENERGY® DAHOFALLS PUVER

Automate the communication between tool sets

Impact on grid performance

Broader Impact

- Resilience Week paper
 - Won best infrastructure R&D paper
- Final Report shared with Duke Energy
- Wind Energy Technologies Office
 - MIRICAL project work package 3.2
- Provisional patent filed
 - Utility patent planned to be filed late summer
- Follow on work with Idaho Falls Power and Duke Energy
 - Further develop the tool to suit utilities needs

An Integrated Approach to Improving Power Grid Reliability: Merging of Probabilistic Risk Assessment with Resilience Metrics

B. Vaagensmith, T. McJunkin, K. Vedros, J. Reeves, J. Wayment, L. Boire, C. Rieger, and J. Case

Abstract--The resilience of a system is often disconnected from its reliability. For many types of systems the sacrifice of nonessential processes may be acceptable for maintaining a resilient set of core operations. For the electric grid, however, this often translates to load shedding. Combining Idaho National Laboratory's probabilistic risk assessment tool SAPHIRE and adaptive capacity measurement software PowDDER can provide insights for improving the electric grids ability to absorb disturbances. A quick survey of major power outages revealed that high wind related storms causing toppled power lines and failed transformers were most commonly associated with major power outages. These findings validated SAPHIRE's output of most critical components for the IEEE 14 bus model during a windstorm scenario. SAPHIRE provided the probabilities of critical equipment being unavailable, providing insight into the likelihood a particular threat scenario would play out. An analysis of PowDDER revealed sensitivities within the system's overall resilience could be improved by reducing the reliability of Load 10 (via load shedding). Combining information from both PowDDER would improve system resilience and system wide reliability simultaneously

Index Terms- Power outages, resilience, probabilistic risk assessment, reliability, and adaptive capacity

I. INTRODUCTION

are critical in an economic, cultural, and habitable sense.

models, and generalized additive models, and provide a high level of accuracy in predicting the number of power outages for a given geographical area divided up into small zones. These types of high level models do not prepare the utility for what specific hardware may need to be replaced for a certain number outages in a specific zone. Further modeling into the hardware architecture is required to identify weak areas for improvement

The US Nuclear Regulatory Commission [5] International Atomic Energy Association [6] have issued guidance outlining how to use probabilistic tools for predictive nuclear plant performance, licensing decisions, and static risk assessment. Extensive databases, developed in partnership with the NRC, support PRA for the nuclear industry and have been incorporated into assessment tools like Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) [7]. SAPHIRE is a static PRA program developed at Idaho National Laboratory which makes use of this data and SAPHIRE enables one to consider preemptive strategies that down to the component level in the context of event trees and/or fault trees. These tools inform probabilities of failure and system risk, and can support stochastic analysis which is often superior to deterministic risk assessment methods alone Probabilistic methods were recently used to evaluate post-fault behavior in renewable systems which provided greater insight to potentially unstable generation groups and operational sequences resulting in islanding [8]. Leveraging probabilistic MODERN society is increasingly dependent on electrical methods to evaluate hardware or operator failure potentially resulting from extreme weather, environment, age, or operational stress illuminates questions regarding the resilience In 2012, it was estimated that weather-related power outages of specific facilities, but provides no insight to the adaptive alone cost the United States 70 billion dollars [1]. Moreover, capacity and resilience of the larger power grid the facility is the loss of systems or services critical for the survival of using or supporting. Moreover, static PRA methods only individuals and hazards associated with electric grid repairs can provide the most accurate insight into known disturbances with result in loss of life [2]. While utilities and researchers similarly sufficient record of occurrence, such as wind storms and strive to improve power grid reliability, the frequency of large wildfires. The uncertainty of static PRA predictions increase for

Contact Information

Work email:Bjorn.Vaagensmith@inl.govWork phone:208-526-4008

Work email:Jesse.Reeves@inl.govWork phone:208-526-2872

Work email:Carol.Reid@inl.govWork phone:208-526-1902

Special thanks to other Team members: Liam Boire, Timothy McJunkin, Kurt Vedros, Jekob Meng, Jason Wayment, Shawn West, and James Case

