

TRAC Program Overview

Kerry Cheung, PhD Program Manager

August 13, 2019

Mission

Office of Electricity (OE)

- Provide national leadership to ensure a secure, resilient and reliable energy delivery system.
- Develop technologies to improve the infrastructure that brings electricity into our homes, offices, and factories.
- Support development of the federal and state electricity policies and programs that shape electricity system planning and market operations.
- Drive electric grid modernization and resiliency through research, partnerships, facilitation, and modeling and analytics.

energy.gov/oe

Electric Power System vs. Electric Power Grid

Electric Power Grid

OE Advanced Grid R&D Portfolio

Advanced Grid Modeling

Microgrids

High Fidelity; Low-Cost Sensors

Advanced Power Grid Components

Synchrophasors

Advanced Distribution Systems

Dynamic Controls & Communications

Energy Storage Systems

Transmission Reliability and Resilience

Resilient Distribution
Systems

Transformer Resilience and Advanced Components

Energy Storage

Genesis of the TRAC Program

Transformer Resilience and Advanced Components (TRAC) Program

Vision and Framework

October 2018

Program Motivation

"Smart" Ford Model-T vs. Tesla Model-X

Advanced sensors and software can improve *operator* performance...

TRAC Program Overview

Program Vision: Technologies and approaches will be developed that help maximize the value and lifetimes of existing grid components, and enable the next-generation of grid hardware to be more adaptive, more flexible, self-healing, resilient to all-hazards, reliable, and cost-effective compared to technologies available today.

Advanced Grid Component Design Features

- Modularity and scalability
- Local intelligence and adaptability
- Inherent cyber-physical security
- Manufacturability and sustainability

TRAC Program Areas

Program Areas

Market & System Impact Analysis

Component Design & Development

Monitoring,
Modeling & Testing

Applied Materials R&D

Objective

- Understand system impacts of new technologies and functions
- Techno-economic analysis for costs/benefits of advances
- Design and prototype components with enhanced features/functions
- Field validations to demonstrate and evaluate new capabilities
- Develop embedded sensors and intelligence to improve reliability
- Testing and model validation to understand limits and performance
- Evaluate and develop new materials and devices that underpin advanced components

Benefit

Reduces the uncertainty and costs of technology integration

Reduce the risk and cost of next-generation components

Improve knowledge of component operations and accuracy of models

Foundational to improved performance and costs

Program Funding History

FY18 and FY19 Conference Report Language: "The Department is directed to continue to support research and development for advanced components and grid materials for low-cost, power flow control devices, including both solid state and hybrid concepts that use power electronics to control electromagnetic devices and enable improved controllability, flexibility, and resiliency."

Advanced Grid

Key Program Activities

FY16

- LPT Design FOA
- GMD/EMP modeling

FY17

- HVDC modeling and controls
- Silicon steel additive manufacturing

FY18

- LPT Prototype FOA
- Low-cost power flow controllers

FY19

- Solid State Power Substation
- Power electronic materials

Increased Emphasis on Power Electronics

Solid State Power Substations (SSPS)

SSPS: substations with the strategic integration of high voltage power electronic converters that provide enhanced capabilities and support evolution of the grid.

Program Trajectory

Program Improvement Process

- DOE Workshops
- Industry Meetings
- Requests For Information

Administration and Congressional Direction

- · DOE Strategic Plan
- Budget Appropriations
- Legislative Authorization

Workshops and Stakeholder Input

- Program Peer Reviews
- DOE Quadrennial Technology Reviews
- Internal Analysis

Program
Results and Gap
Analysis

Research Activities

OUTCOMES

Questions?

Contact Information:

Kerry Cheung, PhD
Program Manager/Strategist
Office of Electricity
U.S. Department of Energy
(202) 586-4819
kerry.cheung@hq.doe.gov

