

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

U.S. R&D Activities to Advance Power-to-Gas Technologies

Neha Rustagi - Technology Manger– U.S. DOE Hydrogen and Fuel Cell Technologies Office

Electricity Advisory Committee Meeting

May 28, 2020

Hydrogen – One Part of a Comprehensive Energy Strategy

Low energy content by volume

Clean, sustainable, versatile, and efficient energy carrier

Fuel Cell Basics

Fuel cells can operate on hydrogen or other fuels and do not involve combustion so have high electrical efficiencies.

Snapshot of Hydrogen and Fuel Cells Applications in the U.S.

Examples of Large-Scale Power-to-Gas and Blend Demonstrations Worldwide

Use of 12% H₂ in HI Gas Network due to syngas production from naphtha

Demonstration of H₂ blending up to 20% at Keele University (U.K.)

H2@scale: Enabling Affordable, Reliable, Clean, and Secure Energy Across Sectors

Examples of Activities to Enable H2@Scale

Assessing resource availability. Most regions have sufficient resources.

3* new H2@scale demonstration projects in Texas, Florida and Midwest.

*Includes 1 project by Office of Nuclear Energy

Hydrogen Demand Potential

Increased Activities on Hydrogen, Energy Storage, Hybrid Systems

Case Study- Electrolyzer Integration with Fast Charging

Dynamic Control of Electrolyzer Dispatch Balances Simulated Grid Load During Fast Charging of BEVs integrated with Solar Generation

Source: National Renewable Energy Laboratory

Example of H2@Scale Project: Demonstration and Framework for H2@Scale in Texas and Beyond

Note: Based on original submission. To be updated based on project finalization

Example of H2@Scale Project: Integrated Hydrogen Production and Consumption for Improved Utility Operations – Orlando, FL

Note: Based on original submission. To be updated based on project finalization

Example of H2@Scale Project: Electrolyzer Operation at Nuclear Plant and In-House Hydrogen Supply

Note: Based on original submission. To be updated based on project finalization

First Ever Carbon-Free, Power-to-Gas System in U.S.

Flagship Power-to-gas Project

Funded By EERE In Partnership With Southern California Gas Company (SoCalGas)

- Approx. \$2.5 million funded through EERE's Solar, Hydrogen and Fuel Cells, and Bioenergy Offices along with cost share by SoCalGas
- Process uses a low-temperature water electrolyzer to produce hydrogen from **renewable power**, then feeds the hydrogen and carbon dioxide into a bioreactor where methanogens produce methane and water
- With minor filtration, the product gas from the bioreactor will meet pipeline quality, allowing it to be injected into the **existing natural gas infrastructure**

- The pilot project at 250 kW will be used to determine the commercial viability of this powerto-gas approach to energy storage and provide insights into megawatt-scale system designs
- By combining these insights with renewable energy resource data, the research team will identify optimal locations in California and the western half of the U.S. where this grid-scale energy storage would be the most economical

Press Release

https://www.nrel.gov/esif/partnerships-southern-california-gas.html

H₂ effects on the strength and life of materials

- Prior R&D has assessed performance of steels and fiber reinforced polymer piping in pure H₂, leading to modifications to the ASME B31.12 Hydrogen Piping and Pipelines Code
- Trace constituents in natural gas may mitigate H₂ effects

Future R&D will address impact of blends on strength and life of current and emerging natural gas pipeline materials

Example data on effects of H_2 on pipeline steels. Impurities may mitigate these effects Image source: Briottet, et. al.

Collaborations

IPHE: A Government Partnership on Hydrogen & Fuel Cells, working along with other global initiatives

International Energy Agency (IEA)

Example of Collaboration: Global Center for H₂ Safety (CHS)

IPHE Steering Committee action: Increase awareness of safety partnership. Promotes safe operation, handling and use of hydrogen across all applications.

www.aiche.org/CHS

Advanced Research on Integrated Energy Systems (ARIES) Initiative

ARIES Vision (NREL, in collaboration with other labs and industry)

- Address the fundamental challenges of how to scale up the physical size of new energy technologies and the number of interconnected devices into larger systems.
- Determine how the integration of multiple diverse technologies into future energy systems can provide a range of benefits including improved efficiency, security, and resiliency, lower costs, and greater customer choice.

Key	y Questions:
1)	What key benefits will this new capability provide to
	you and/or your organization?
2)	What other R&D challenges should be addressed
	that will ensure success and impact for industry?
3)	Are the capabilities described above relevant to
	stakeholders?
4)	Is there an interest on the part of owners and
	operators of commercial or large-scale energy
	generation in partnering?
5)	What other facilities, equipment, and capabilities
	may be required?
6)	What technology innovations and advances can be
	envisioned with the availability of ARIES?

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Use resources available to share knowledge

Download the H2IQ resource for free:

energy.gov/eere/fuelcells/downloads/increase-your-h2iq-training-resource

Join monthly H2IQ hours to learn more about hydrogen and fuel cell topics

energy.gov/eere/fuelcells/fuel-cell-technologies-office-webinars

Visit H2tools.org for hydrogen safety and lessons learned

h2tools.org/

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells hydrogen.energy.gov

Resources and Announcements

Save the Date

June 8-10, 2021 Annual Merit Review and Peer Evaluation Meeting for the Hydrogen and Fuel Cells Program in Arlington, VA

Oct 8 - Hydrogen and Fuel Cells Day (Held on its very own atomic-

weight-day 1 Hydrogen

Resources

Visit H2tools.org for hydrogen safety and lessons learned

https://h2tools.org/

Learn more:

Download the H2IQ resource for free: energy.gov/eere/fuelcells/downloads/increase-your-h2iq-trainingresource

Join monthly H2IQ hours to learn more about hydrogen and fuel cell topics energy.gov/eere/fuelcells/fuel-cell-technologies-office-webinars

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov

Thank You

Neha Rustagi

DOE Hydrogen and Fuel Cells Program

neha.rustagi@ee.doe.gov

Looking for more info? #H2IQ

www.energy.gov/fuelcells www.hydrogen.energy.gov