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Project Overview

* Project Summary
* Understand the potential for additive manufacturing in the production of
electrical steels with tailored microstructures and composition for improved
performance in transformer cores

Budget: S1.2M
POP: 10/1/17 —9/30/19
* Project lead: Alex Plotkowski (ORNL)

* Project team:
e Ryan Dehoff (Additive manufacturing) e Jamie Stump (Heat transfer modeling)
e Jason Pries (EM modeling and magnetic testing) * Niyanth Sridharan (Ferrous metallurgy)
» Keith Carver (Additive manufacturing and design)  * Peeyush Nandwana (Heat treatment)
* Fred List (Additive manufacturing)
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Context and Motivation

Additive manufacturing of Fe-Si transformer cores
may be a future approach for rapid manufacturing

. . . a0 |

in emergency situations ol

AM May offer a route for improved microstructure P e
design and production of high-Si electrical steels EEEEEA -
for improved performance NEEE R
Significant materials science and design challenged { mhese ,’
must first be addressed ‘ T
— Approaches for manufacturing brittle high-Si steels . s 2 g ey ‘i
— Understanding and exploiting process-microstructure-property linkages 3 // !
— New component designs for AM P4 N $
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State of the Art

Examples of control over grain orientation in additive manufacturmg of Ni aIons

Debroy et al., Prog. Mat. Sci., 2017.
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Uniqueness and Significance

* Technical Approach
* Microstructure optimization through manipulation of additive
manufacturing process conditions
 Fundamental understanding of process metallurgy
* Consideration for influence of both material chemistry and structure
enabled by advanced manufacturing
* Unique designs enabled by additive manufacturing
 Significance
* New production route for soft-magnetic materials
 Roadmap for materials, process, and design considerations
e Potential manufacturing route for rapid production of transformer

cores
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Test Setup and Loss Decomposition

Isolate build direction
Brockhaus MPG200 system used for

automated measurement and data
post-processing with good
repeatability

EM simulation of edge effects
6.35 mm sq. x 63.5 mm long
Simple decomposition that assumes

linear energy loss with frequency

P cycle

E cycle

Chyst(B)f + Ceddy (B)fz

Chyst(B) + Ceqay (B)f
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Additive Manufacturing

* Renishaw AM250
* Pulsed laser powder bed system

Cube Mass (g)
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Fe-Si Processing with a Conventional Single-Laser System

e Two scan patterns * Double scan shows lower hysteresis
— Single scan (rotation) loss
— Double scan with constant — Related to grain texture
second pass * Eddy currents account for 70-80% of

power losses
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Thin Wall Structures to Reduce Eddy Current Loss

 Thin wall structures to confine eddy current development and
significantly reduce power loss

 Dramatic variations in heat transfer depending on scan pattern

Solid Core Laminated Core
(A) Transverse (B) Longitudinal

n n N f\ ﬂ (C) Rotated

i

-— Layer n+2
—_—
<
S
with no laminations with laminations <«

Layer n+1
high Eddy Currents low Eddy Currents LapErE

O = —p=1.45mm -
wlu —>

zamso, Agvanced Grid

s %
W PN Research
L “F OFFIGE OF FIFGTRIGITY
: ¥ Us DEPARTMENT OF ENERGY




Thin Wall Grain Stru

Transverse

Longitudinal

400 um

e Scan pattern 600 um |
orientation has
dramatic effect on 800 um
grain size
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Simplified Thermal Process Model

 Green’s Function solution for transient thermal field around a moving volumetric Gaussian heat source
in a semi-infinite domain (Nguyen et al., Weld. Res. Supp., 1999)

* Neglects non-linear effects

* Adaptive quadrature technique for accurate and efficient numerical integration

10
a 1.0e+07 2600.0
O 0084 t“’"’* Im"
— £ " " n . 23000
2 0.06 T(I:] T E?TQ 1 exp —3_;\;:{;"]- 3};.&-'}_ EZ(t"]' . | 200 -
= X - - i == 3/ - - 8 1 =10e+t E
clim ,."I 3} f= ) . 3 £ ~ 21000
E £ { o \W ‘pv"' q"}-}’ ng Z50et5 @ L 20000+
@ 004 ; :
D_ 20845 — 1900.0
E 0.02 4 . Ilamn
- 1700.0
E 0.00 : " N - - - - - 67 oo 16100
15 20 25 30 z
Position £
44
3 iglhis:;(?asws ‘ Leave project e o] 0 ¥ Fork [0
@ Heat Transfer  Additive Manufac...  Solidification
M LICENSE o1 Commit ¥ 1Branch & 0Tags [ 23.5 MB Files 2
Heat transfer code utilizing a nondimensionalized semi-analytic solution to moving heat sources with a 3D Gaussian power density.
COMPILED FOR WINDOWS
Open Source Copyright and Public Release 0 . . . . .
p pyrig 0 2 4 6 8 10 d Grid
11 x (mm) h

BRG¥ OFFICE OF FLECTRIGITY
¥ US DEPARTMENT OF EMERGY

Stump and Plotkowski, Appl. Mat. Mod., 2019




Process Modeling of Thin Wall Structures

Solidification conditions
dictate grain structure

Understood through statistics
on solid-liquid interface and
solidification pathways
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Design of AM Thin Wall Structures

Not limited to planar laminations

Unique geometries offer improved
performance

AC simulations of eddy-current
development helps refine and down-
select designs
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As-Fabricated AC Performance

Decrease in hysteresis losses with oriented thin wall grain structure
Dramatic decrease in eddy-current losses
Unique AM cross-section based on Hilbert curve shows best performance
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Influence of Heat Treatment

Transverse

Rotated
Scan Pattern

Scan Pattern

Recrystallization and grain growth
behavior depends on scan pattern

Increased grain size reduces increases
permeability and reduces power losses

5 min. 60 min.
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Grain
Growth
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Additive Manufacturing of High-Si Electrical Steel

Materials Science

High-Si alloys are brittle due to
the formation of ordered B2
and DO, phases

Weight % Silicon
6 7 8

Cracking during rolling
of Fe-6.5Si
(Kustas, Purdue
University, 2016)
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Advanced Characterization

Combination of neutron diffraction (HFIR)

and TEM to understand process-
microstructure linkages

Theoretical peaks

DO,

B2
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Process Optimization

Successful
manufacturing of
Fe-6Si samples
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Test Geometry Performance

* Increase in Si content shows notable drop in power losses, especially
at high polarization

 Additively manufactured Fe- -

6Si has lower power losses : E S
than benchmark non- 55 ?
oriented sheet at 60Hz ‘g’ v
* ORNL thin wall designs : i
show better performance : i3 z
than previous AM Fe-6.9Si s2f s
steel from literature o b
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Transformer Core Design and Fabrication

* Produced with both Fe-3Si and Fe-6Si
* AM cross-section design based on a Hilbert space filling curve

* Currently undergoing heat treatment
 To be tested in August
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Project schedule, deliverables, and current status

» Total Budget: $1.2M * Budget Remaining: $255k

Task FY18Q1 | FY1302 | FY18 Q3 | FY18 Q4 | FY19 Q1 | FY19Q2 | FY19Q3 | FY19Q4

Task 1: Preliminary feasibility of fabricating controlled grain structured
electrical steel materials

® Project StatUS: Task1.1: Modeling of chemistry dependence on solidification [‘/j

behavior
° Benchtop Scale tra nsformer ;aﬂi:dle.f:DE:erminenp:imaIchemicalcumpnsi:innandsnurce [/]
cores manufactured W|th :’a;k.l.s.:Mn[;elingolfmultiplescanstrategiesandpreliminaw [‘/j
abrication of samples

Fe—3SI and Fe_6SI Completed Task1.4: Preliminary material characterization [/]
® Heat treatments recently Task 2: S5can strategy optimization based on modeling improvements

for fabrication of complex geometries

Completed Task 2.1: Reduced order analytical model for heat flow and thermal @

¢ FI na | teStI ng SCh ed u Ied fo r f';i?(i;.n;: Eliirr:li;ri]?nnaar:E:Er:saiir:lii:‘idsiudw,r ofin-situ reaction kinetics for [/j
August

creating laminate structures using powder bed AM technology

Task 2.3: Design of new scanstrategies for controlling grain [/]

1 1 1 orientation ina cross section mimicking a transformer core
* Final reporting in _ £ .
Task 2.4: Fahricate a transformer core with radially controlled grain 90cy
P (o}
September structure

Task 2.5: Final reporting

& Advanced Grid
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Next Steps — Open Questions for Future R&D
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High-Si alloy design for AM

Minor additions of ternary alloying
elements can influence order phase
formation kinetics

Alloys must be designed specifically
for AM processing

Complex thermal histories in AM are
key to solid-state ordering
phenomena

Combined AM and HT optimization in Fe-Si

* Recrystallization and grain growth kinetics are influenced
by scan strategy

* Opportunity for tuning final HT grain texture

* Fundamental materials science challenges requiring
advanced processing, modeling, and characterization
techniques

Processing and Alloys for
High-Frequency Operation

* State-of-the-art AM systems may
enable lamination thickness below
200 pm

* High cooling rates in AM are suitable
for nanocrystalline alloys and bulk
metallic glasses

* Additional capabilities for geometric

3 , flexibility offer unique design

5 w5 s i opportunities

Advanced Grid
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Broader Impact

Publications
e Stump and Plotkowski: “An adaptive integration scheme for heat conduction in additive manufacturing”, Appl. Math. Mod., 75, pp.
787-805, 2019.
* Plotkowski et al.: ” Influence of Scan Pattern and Geometry on the Microstructure and Soft-Magnetic Performance of Additively
Manufactured Fe-Si”, Additive Man., 29, pp. 100781, 2019.
e Sridharan et al.: “Effect of Heat Treatment on Texture Evolution in Additively Manufactured Fe-Si Components”, In preparation.
* Plotkowski et al.: “Atomic Ordering in Additively Manufactured Fe-6Si”, In preparation.
* Plotkowski et al.: “Design and Performance of an Additively Manufactured Fe-6Si Transformer Core”, In preparation.
Presentations
* Plotkowski et al.: “Laser Powder-Bed Fusion of Fe-Si Soft-Magnetic Materials”, 2019 TMS Annual Meeting & Exhibition, San Antonio,
TX.
* Plotkowski et al.: “Laser Powder-Bed Fusion of Fe-Si Soft-Magnetic Materials”, Additive and Advanced Manufacturing of Magnetic
Materials Workshop (Invited), Albuguerque, NM.
Open source software copyright claim
» 3DThesis — Heat conduction process model for additive manufacturing (https://gitlab.com/JamieStumpORNL/3DThesis)
Provisional Patent
* Plotkowski et al.: “Additively Manufactured Laminate Structures for Soft-Magnetic Materials”, filed 2/11/2019.
Collaborations
e Sandia National Laboratory — Ordered phase evolution
Additional research funding
* AMO project on system development for electric motor components
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https://gitlab.com/JamieStumpORNL/3DThesis

Contact Information

Alex Plotkowski

plotkowskiaj@ornl.gov

p/75@ornl.gov
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