OE Visualization and Controls Peer Review

Load Control for System Reliability and Measurement-Based Stability Assessment

Dan Trudnowski, PhD, PE
Montana Tech
Butte, MT 59701
dtrudnowski@mtech.edu
406-496-4681

October 2006

Presentation Outline

- Introduction
 - Goals, Enabling technologies, Overview
- Load Control
 - Activities, Status
- Stability Assessment
 - Activities, Status
- Wrap up
 - Related activities, Staff

Goals

- Research and develop technologies to improve T&D reliability
- Technologies
 - Real-time load control methodologies
 - Measurement-based stability-assessment

Enabling Technologies

- Load control enabled by GridWise technology (e.g. PNNL's GridFriendly appliance)
- Real-time stability assessment enabled by Phasor Measurement (PMU) technology

Project Overview

- Time line: April 18, 2006 thru April 17, 2008
- Funding:
 - DOE (FY06): \$1,900k
 - Matching (Universities, Private): \$475k
 - Total: \$2,375k
- Research participants:
 - Academia: Montana Tech, Montana State University, University of Wyoming
 - Labs/private: Pacific Northwest National Laboratory (PNNL),
 NorthWestern Energy, Electric Power Group, MSE-TA.
- Other Collaborators: Bonneville Power Administration, PNNL
- Advisory board: BPA, WAPA, PNNL, NorthWestern Energy, NETL, DOE

Tasks

- Task 1: Load control strategies
- Task 2: Measurement-based stability assessment
- Task 3: Laboratory development

Task 1 – Load control

- Goal: Develop and demonstrate control strategies for extracting the optimal benefits from intelligent loads for improving T&D reliability
- Issues to be considered are
 - Subtask 1.1: Angle stability and frequency regulation
 - Subtask 1.2: Voltage regulation and stability
 - Subtask 1.3: Power quality
 - Subtask 1.4: Frequency measurement feasibility
- Major Milestones
 - Develop load control strategies
 - Demonstrate strategies via computer simulation or benchscale testing
 - Determine feasibility and methods of distribution level frequency measurement

Task 1 – Load control goals

- Subtask 1.1: Improve system angle stability and frequency regulation
 - Develop modeling and simulation tools
 - Develop load control strategies and concepts
 - Actual-system computer simulation case study
- Subtask 1.2: Improve system voltage regulation and stability
 - Develop modeling and simulation tools
 - Develop load control strategies and concepts
 - Actual-system computer simulation case study
- **Subtask 1.3**: Design a Reactive and Harmonic Current Compensator.
 - The compensator circuit will reduce the harmonic content of a load and provide reactive power support
 - The goal is to build and demonstrate a working prototype
- Subtask 1.4: Conduct a wide-based frequency measurement study
 - Results of the study will provide information on load control feasibility and new signal measurement technology

Task 1 – Current status

Subtask 1.1:

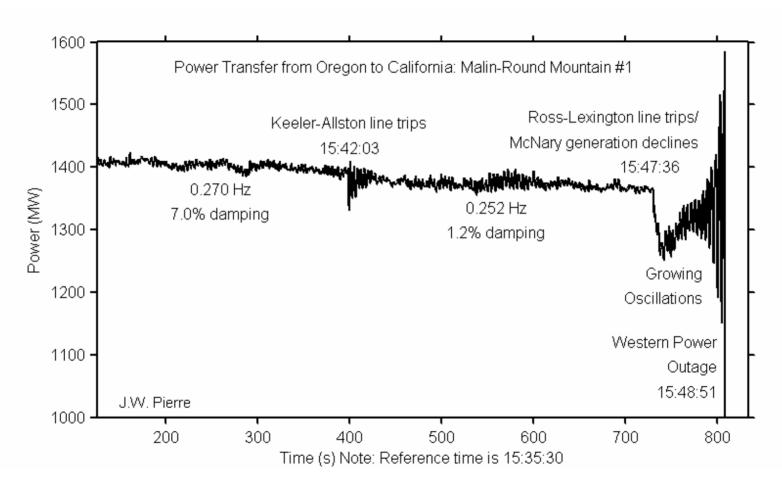
- Work is being coordinated with similar research at PNNL
- Simulation tool has been developed
- Control strategies have been hypothesized and are currently being tested on reduced-order systems

Subtask 1.2:

- For voltage control, the load model is critical
- A dynamic model that will predict the power demand of aggregate water heaters is currently being developed

Subtask 1.3:

- Limitations of modern compensators have been reviewed
- New circuit topology has been developed
 - Simulations currently being conducted


Subtask 1.4:

- A synchronized frequency sensor circuit has been develop
- Circuit and measurement systems are currently being designed and tested

Task 2 - Measurement-based stability assessment

- Goal: Develop and demonstrate measurement-based real-time stability assessment tools that may be used by grid operators to improve system reliability and asset utilization
- Subtask 2.1: Electromechanical algorithms (i.e., "mode-meter")
- Subtask 2.2: System control and monitoring tools
- Subtask 2.3: Voltage stability assessment
- Research Group: Mr. Bill Mittelstadt (BPA), Dr. John Hauer (PNNL), Dr. Henry Huang (PNNL), Dr. Manu Parashar (EPG), Dr. John Pierre (UW), Dr. Ning Zhou (PNNL), Trudnowski (Tech)
- Builds upon 20+ years of research
- Major milestones
 - development and demonstration of algorithms for accurate and fast mode estimation
 - testing mode-meter concept systems in operation and control centers

August 10, 1996 Outage

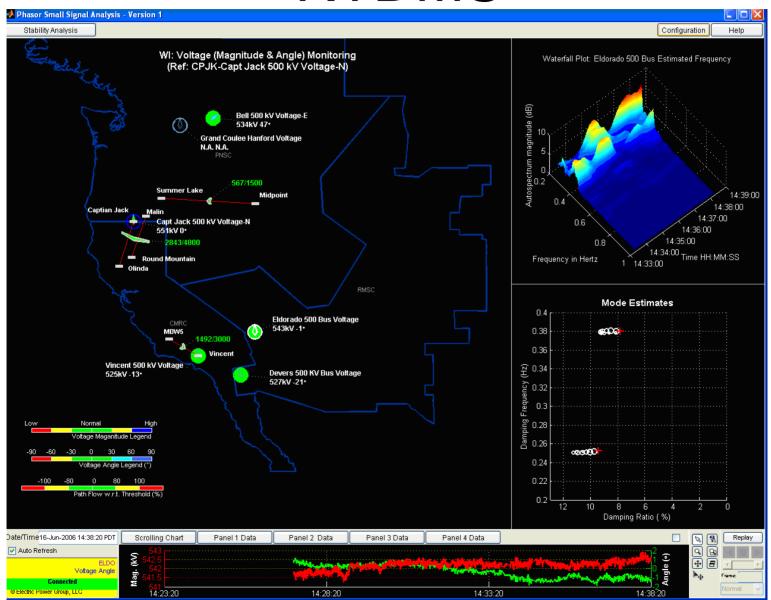
Task 2 - Goals

- **Subtask 2.1:** Refine, develop, and evaluate methods for estimating mode frequencies, damping, and shape, including error bounds, from measured data.
 - Both ambient and probing conditions shall be considered
 - Advanced signal processing
 - Issues: Accuracy, Window size, Data Type

Subtask 2.2:

- Transfer useful results from subtask 2.1 to industry
- Develop and test prototype mode-meter tools
 - Certified code
 - Performance evaluation (Monte-Carlo testing, Real system testing)
- Subtask 2.3: Scope approaches for assessing system voltage stability properties using measured data

Task 2 – Current status


Subtask 2.1:

- Have developed 5 mode estimation algorithms for ambient data
- Have developed 1 mode estimation algorithm for probing data
- Currently developed error bounding algorithms
- Currently developing mode shape estimation algorithms

Subtask 2.2:

- Developed, tested, and certified code for Yule Walker (YW), Yule Walker with spectral analysis (YWS), and Sub-space ID (N4SID) algorithms
- Developing web page for posting certified code and related publications
- Formed partnership with EPG for development of mode-meter in the RTDMS
- First version of mode-meter has been implemented in RTDMS and presented at the Sep. 2006 EIPP meeting

RTDMS

Task 3 – Laboratory Development

- Scope and design a laboratory to teach and conduct research on intelligent powersystem control issues
- Major milestones:
 - Development of a laboratory proposal

Key Staff

TASK	LEADER	SUPPORT	Collaboration	TOPIC
1				Load Control
1.1	New Faculty (Tech)	R. Shah (NorthWestern); Trudnowski (Tech)		Stability and frequency regulation
1.2	Nehrir (MSU)	D. Pierre (MSU); Trudnowski (Tech)		Voltage regulation
1.3	Gao (MSU)			Power quality
1.4	Morrison (Tech)	TBD (MSE); Trudnowski (Tech)		Frequency measurement feasibility
2				Measurement-based stability assessment
2.1	J. Pierre (UW)	Zhou (PNNL), Trudnowski (Tech)		Mode-meter algorithm development
2.2	Trudnowski (Tech)	Zhou (PNNL)	EPG, BPA	Mode-meter operation and control tools
2.3	Trudnowski (Tech)			Voltage stability assessment
3	Wahl (Tech)	TBD (MSE); Trudnowski (Tech)		Energy lab design

Publications

Task 1:

 D. Trudnowski, M. Donnelly, and E. Lightner, "Power-System Frequency and Stability Control using Decentralized Intelligent Loads," 2005/2006 IEEE PES T&D Conference and Exposition, Dallas, TX, May 2006.

Task 2:

- N. Zhou, J.W. Pierre, and D.J. Trudnowski, "A Bootstrap Method for Statistical Power System Mode Estimation and Probing Signal Selection," *Proceedings of the IEEE Power Engineering Society General Meeting*, June 2006. (Invited Panel Paper).
- N. Zhou, J. W. Pierre, D. Trudnowski, R. Guttromson, "Robust RLS Methods for On-line Estimation of Power System Electromechanical Modes," *IEEE Trans. on Power Systems*, (in review).
- D. J. Trudnowski, J. W. Pierre, N. Zhou, M. Parashar, J. F. Hauer, "Performance of Three Mode-Meter Block-Processing Algorithms for Automated Dynamic Stability Assessment," *IEEE Trans. on Power Systems*, (to be submitted).

COMMENTS AND QUESTIONS?