

Environmentally Neutral Automated Building Electric Energy (ENABLE) Platform

TRAC Program Review

US Department of Energy, Office of Electricity

Burak Ozpineci, Group Leader

ORNL

Presented at Oak Ridge National Laboratory

Oak Ridge, TN

burak@ornl.gov

August 13, 2019

Project Overview

- Project summary
 - Develop a 5 kW higher performance SPIN (ENABLE) Power Module taking advantage of wide bandgap (WBG) 3-Dimensional (3D) printed version of an AC to DC and dual active bridge DC-DC converter circuit.
- Total value of award (federal + cost share)
 - **\$1,250K**
- Period of performance
 - 3/1/2017 to 4/30/2019
- Project lead and partners
 - Oak Ridge National Laboratory (Lead)
 - Flex Power Control

Context concerning the problem being addressed

- Need for "building to grid" power conversion systems continues to grow for
 - renewable energy resources
 - energy storage systems
 - wired and wireless charging
 - variable speed appliances
- Any energy load or resource needs its own power conversion system
 - redundancy, increased costs
 - complex coordination and communication
 - reduced energy conversion efficiency
- Significant challenges exist in firmware update

Making establishing a practical and efficient energy management system for building power demand and generation difficult

State of the art approaches for addressing the problem

- Separate power conversion systems:
 - PV to Grid/Home
 - Home Battery to Grid/Home
 - Grid to EV Charging
 - Various appliances
- No way for centralized/coordinated control for all systems
- Lack of flexibility / smarts

Uniqueness of the proposed solution

- Centralized hardware/software hub that powers and controls loads and sources through a single connection to the utility grid
 - Easier utility and consumer interaction with the energy resources and loads.
 - No need for a grid interface inverters for each energy source or load.
 - "plug and play" addition of new renewables, passive and active loads, and their power conversion modules.
- "Smart phone" like system for Connected and Autonomous Buildings
- Can be scaled up for other grid applications

The Smart Power Integrated Node (SPIN) – Flex Power Control

- One dynamic box to correct, control, secure, predict, and transact
- Automates rate arbitrage based on real time demand, forecasts, customer preferences, and grid constraints
- Charging control signals support DER management speed, accuracy, and scale
- Real Time power correction supports grid stability
- PEV Smart Charging balances intermittent solar

ENABLE TCF System Architecture

Power module - (ORNL)

- High density and high efficiency bidirectional isolated AC-DC converter using WBG devices and 3D printing technologies
- High speed low level control functions

System controller (Flex Power Control)

- Dictate operation modes
- System control and grid interactive functions

Data acquisition (Flex Power Control)

- Tests and real-time data collection
- Performance evaluation

Significance of the results, if successful

SPIN Enables Grid Functionality

What

Digital Control

Where

- At the edge of the grid where needed
- Any building location

When

• 24 hours, 365 days a year

How

- Closing the control loop at the edge of the grid
- Integration of non centralized resources

Significance of the results, if successful

SPIN Enables Features

What

- Reduction in energy cost
- Stand Alone Power
- Hi Power DCVehicle Charging

Where

Any building location

When

• 24 hours, 365 days a year

How

 SPIN's integration of discrete elements

Significance of the results, if successful

Three elements of cost benefit

- Life Cycle Cost
 - Power electronics life increase 2X from current solar inverter technology
 - Single box
 - Simplified installation
 - Increased functionality
- Operating Cost
 - Lower energy cost through control of power flows (when, where, and how)
- Ancillary Grid Services
 - Allow for quick response power regulation control
 - Aggregation of power

Туре	Forecasted Cost with No Solar	Forecasted Cost with Solar	Optimized Cost with Solar
Fremont	\$15.25	\$8.53	\$6.81
Maui	\$19.76	\$14.02	\$10.92
PG&E TOU	\$24.04	\$13.24	\$9.62

Specific research questions being addressed

- How do 3D printed heat sinks perform compared to traditional heat exchangers?
- How does the WBG-based power module for SPIN/ENABLE perform against a Si version?

Technical explanation of the proposed approach

- Design, build and test a 5 kW power converter prototype using WBG devices, film capacitors, and 3D printed heat exchangers
 - Design the 5kW grid-connected ENABLE hardware platform with a source and a load module
 - Analyze and simulate the designed hardware system for component sizing and control development
 - Build the WBG-based 3D printed ENABLE hardware system
 - Evaluate the system

Power Converter Architecture

- AC input
 - 240Vrms/25Arms
 - 120Vrms/25Arm
- DC Output
 - 5kW (at 240Vac input, 250Vdc 450Vdc output)
 - 200Vdc 450Vdc
- WBG devices
- Air-cooled
 - Commercial and 3D printed heat sinks

Overview of Control System

Advanced Grid

System Assembly using COTS Heat Sinks

- Ducted Cooling 1 Heat Sink per Phase
- Extremely low profile
- 2 Fans (increased reliability)
- Minimal dead space (also usable)
- Duct design ensures equal flow across heat sinks
- Duct outlet has asymmetrical orientation

3D-Printed Heat Sink - Genetic Algorithm Implementation

Machine learning based Automatic Co-simulation Iterating Loop

General concept of Genetic Algorithm "Survival of the fittest"

3D-Printed Heat Sink - Genetic Algorithm Based Optimization

Optimization target: Junction temperature & Height

Optimization parameters:

3D-Printed Heat Sink - Summary

Height comparison between Aavid HS (Red) and GA HS (Blue)

- Applying GA based optimization on single unit reduced
 - height by 38%
 - maximum device junction temperature by more than 20%.
- Further improvement possible with
 - larger optimization iterations
 - more design features
 - higher design freedoms to fully utilized the benefits of 3D printing

Temperature comparison between Aavid HS(Right) and GA HS(Left)

Hardware Design Summary

	Ver. 2	Ver. 1	Note
SiC MOSFET	Rohm SCT3022ALGC11 14	Rohm SCT3022ALGC11 14	Replaced Cree/Wolfspeed C2M0025120D
SiC diode	Microsemi APT30SCD120B 14	Microsemi APT30SCD120B 14	
DC Cap	EPCOS B32778J5367K000 6x360=2160μF	EPCOS B32778J4487K000* 4x480=1920μF	*not in stock
Inductor	Coilcraft SER2918H 2 (10µH each)	Wurth 74435580330 2 (3.3μH each)	
Transformer	Custom made (4:3)	Custom made (1:1)	
Output Cap	EPCOS B32778J5367K000 1	EPCOS B32778J4487K000* 2	

- Completed designs for a 5kW WBG-based ENABLE hardware system
 - Ver. 1 designed for operating at a fixed dc output voltage (400V)
 - Ver. 2 designed for operating at over a wide output dc voltage range (200V-450V)

Hardware Assembly

System using COTS heat sinks

COTS heat sinks

System using 3D-printed heat sinks

Test Results

AC to DC conversion

AC-DC conversion efficiency vs. output power

Test Results

DC to AC conversion

DC-AC conversion efficiency vs. output power

Project schedule, deliverables, and current status

• \$1250K spent

Date	Milestones and Deliverables	Status
Jun 2017	Complete circuit analysis to size components and to develop a control strategy	Complete
Sep 2017	Complete circuit simulation to verify the analysis results, generate efficiency data for various operating and power flow conditions, and to validate the controls	Complete
Dec 2017	Complete design for WBG-based 5kW ENABLE hardware system	Complete
Sep 2018	Complete the build of the hardware	Complete
Apr 2019	Complete test and evaluation of the hardware system	Complete

Anticipated challenges and risk mitigation strategies

Project complete

Next steps

- Project is complete
- For commercialization, the power module needs to be extensively evaluated for each mode described earlier.

Broader Impact

- A manuscript will be prepared for publishing the results of the project.
- More discussions will be held with Flex Power Control for commercialization of this technology.

Contact Information

Burak Ozpineci, Ph. D.

P

Power Electronics and Electric Machinery Group

Oak Ridge National Laboratory

Knoxville, TN 37932 USA

Email: burak@ornl.gov

Gui-Jia Su, Ph. D.

Technical Lead

Power Electronics and Electric Machinery Group

Oak Ridge National Laboratory

Knoxville, TN 37932 USA

Email: sugj@ornl.gov

Robert (Bob) Dawsey

Commercialization Partner

Flex Power Control

Torrance, CA 90503

Email: Robert.Dawsey@flxpwr.com

