Need and Opportunities in Energy Storage Integration

DOE Energy Advisory Committee

February 3-4, 2021

Pathway 2045: Achieving 100% carbon neutrality

- Decarbonization of the **electric sector**
- Significant electrification of transportation and buildings and the use of low-carbon fuels to hard-toelectrify applications, such as industrial and heavy-duty transportation
- Sequestration of remaining carbon through natural processes and engineered solutions
- Concludes California will need 30 GW of utility-scale energy storage and projects another 10 GW of customer-sited storage

Pathway 2045: Achieving 100% carbon neutrality

Our Reimagining the Grid approach

GRID CHALLENGES

DEVELOPMENT OF GRID OPTIONS

 \gg

ROADMAP

Factors driving future grid uses, needs & evolution

Customer

Energy Supply

Climate Impacts

Starting point for the grid

Current SCE Grid

Physical Topology

SCE Regions

Geographic areas with unique attributes and needs (evolving over time)

Unique needs & characteristics

Local grid challenges

Region 1

Region 2

Region 3

Evolving SCE Grid

Grid design solutions with specific capabilities and technologies

Required capabilities

New grid technologies

Specific grid architectures

Future Grid Roadmap

Near term

Mid term

Long term

Grid challenges

CUSTOMER

- Supporting large adoption of DERs on distribution systems
- Higher usage and load density largely due to electrification
- More end-uses that are sensitive to power quality (e.g., power electronics)
- Overall, increased reliance on electricity

SUPPLY

- Integrating very high levels of renewables (far from load centers)
- Ensuring Resource Adequate with an evolving mix of resources
- Maintaining grid stability and resilience under lower levels of inertia with conventional generation retirements

- Direct impacts to **performance of grid assets** from climate risks such as extreme temperatures, wildfires, and floods
- Climate-driven changes in customer needs and electric service continuity

What the Reimagined Grid may look like

- Our vision for the reimagined grid will require rethinking various aspects of the grid.
- We are developing additional operational flexibility and will require substantial advancements in grid control system technologies and the underlying communication networks and an integrated cybersecure platform.
- The rapid growth of DERs and largescale renewables and storage is driving us to develop and test new technologies and customer programs.

SCE and Sunrun® Virtual Power Plant (VPP) pilot

- How it works:
 - 1. Enroll 300 residential customers with PV-Paired battery systems from Sunrun®
 - 2. SCE calls events utilizing its existing demand response automation system for notifications
 - 3. Sunrun® receives event signal and calls on customers' batteries
 - 4. SCE utilizes a 3rd party to analyze the results
- Test cases are selected to determine effectiveness at addressing local grid needs, such as a distribution circuit peak capacity constraint.
- Pilot anticipated to develop understandings on:
 - The customer value proposition
 - Ability of a 3rd party aggregator to provide the required services
 - Technical data such as the resultant MW capacity from the systems, performance characteristics, etc
- Pilot will last 12 months and ends in June 2021