

Demonstration of a 5 MVA Modular Controllable Transformer (MCT) for a Resilient and Controllable Grid

TRAC Program Review

US Department of Energy, Office of Electricity

Presented at Oak Ridge National Laboratory

Oak Ridge, TN

08/13/2019

Prasad Kandula, Research Engineer II
Deepak Divan, Professor
Georgia Institute of Technology

krprasad@gatech.edu ddivan@gatech.edu

Project Overview

- Objective: Design, build and test a 5 MVA 24 kV/12 kV Modular controllable transformer (MCT) and demonstrate the functionality.
- Budget: \$2,293,347 (\$1,798,315 + \$495,032)
- Period of performance: 06/01/2019 05/30/2021
- Project lead and partners
 - Georgia Institute of Technology Lead
 - Clemson university
 - DeltaStar
 - ORNL
 - Southern Company

Introduction: Grid Resiliency

Georgia Center for Distributed Energy

- Grid Resiliency is one of the key concerns of modern day grid:
 - The ability of a system to return to an optimal/sub-optimal state following a disturbance.

Smaller Trapezoid ->

More Resilient

- The current infrastructure is not equipped to handle High Intensity Low Frequency (HILF) events:
 - Weather-related emergencies (Hurricanes, Lightning Strikes)
 - Physical damage through terrorist attacks
 - Cyber-physical attacks
 - EMP bursts
- Critical Infrastructure sustaining damage:
 - Generators,
 - Transmission Line Networks
 - Substations
 - Large Power Transformers (LPTs)

Resiliency Metric

MVA-months lost could serve as a measure for resiliency

Large Power Transformers - Problems

- Large Power Transformers (LPTs) are critical pieces of today's electricity infrastructure.
- Failure of a single LPT can disrupt electrical services to 30-100,000 customers.
- Following problems make LPTs extremely vulnerable and very difficult to replace upon failure
 - Aging assets
 - Unique designs
 - Long turn-around times
 - Transportation delays
 - Foreign manufacturing infrastructure
 - Limited flexibility embedded in the grid
- What is the most resilient approach to handling loss of LPT contingency?

Large Power Transformers - SOA

How does the current infrastructure handle this?

- Mobile Transformers
 - 3-phase units up to 100 MVA and 230 kV delivered fully assembled and prefilled with the transformer oil for fast deployment.
 - For larger MVA, 1-phase modules are used.
- DoE-sponsored RecX transformer
 - Single phase modular transformer
 - Factory to site-installation in 3-6 days instead of the typical <u>4-6 weeks</u>.
- Spare Transformer Equipment Program (STEP)
- NERC's Spare Equipment Database (SED)

Delta Star Mobile Transformer

- Mismatched impedance in replacement units causes changes in power flow patterns.
- Higher losses make these only temporary solutions
- Not a fully resilient and reliable approach
- Lack of controllability limits adoption of solutions

Approach: Modular Controllable (Hybrid) Transformers

Replace LPT with multiple small rated MCTs

MCT: Transformer augmented with a fractionally-rated converter to provide full P/Q/V/I/Z control

Unique Features

- ✓ Standardization simplified inventory and build
- ✓ Modularity scalable
- ✓ Flexibility install in a centralized of dispersed way
- ✓ Mobility Faster restoration
- ✓ Resiliency Improvement
- ✓ Operational control (P/Q/V/I/Z)
- ✓ Fail-Normal High reliability
- ✓ Standard industry designs *low cost*
- ✓ Fractional-converter rating low cost
- ✓ Simplified converter BIL management

Significance: Case Study

Large-scale Study System

- Simulation includes N-1 contingency analysis and determination of the most severe transformer outages in the Texas system.
- Then outages for a conventional and MCT transformer cases are modeled.
- A 200MVA transformer is considered (replace 200 MVA with three 67 MVA MCTs).

Significant Savings!

The cost difference between conventional and MCT is comparable for both normal and secure contexts.

If the disturbance occurs once in the 30-year lifetime of the equipment, the replacement is justified

based exclusively on the improvement in resilience with the MCT as determined by decreased operational cost under secure dispatch

— economic impact of power flow controllability not considered

Significance...contd

Congestion Management

DER Integration Through Power Flow Control

Voltage Control

Variable Impedance

Technology Status

Georgia Center for Distributed Energy

2013-2016/ ARPA-E/G-CDPAR

- 1 MVA Xmr w/ 3% voltage injection capability
- 13 kV/1 MW Field Demonstration on a two feeder system

13 kV 1 MW Power Router Field Demo

2017/ARPA-E/G-CNT

- 13 kV 1 MVA Xmr + 5% control 3-level BTB converter
- Demonstrated in lab environment

2017 - 2018 / DOE/ MCT Phase -1

- Replace 200 MVA LPT with multiple small rated Modular Controllable Transformers (MCT) to improve grid resiliency and operational control (P/Q/V/I/Z).
- 139 kV/ 39 kV 56 MVA transformer w/ 8 % voltage control.
- Delta Star designed 56 MVA LPT with following features
 - Integrate fail-normal switch
 - Minimize transportation and commissioning time
 - Shipped with bushings and oil filled

56 MVA Direct Oil Forced Air Transformer

Project Objective

• Design, build and test a 5 MVA 24 kV/12 kV MCT and demonstrate the functionality, which includes modularity, power flow control, interoperability through variable impedance and connection of multiple voltage levels, storage integration, and fail-normal design.

Assess the impact and penetration level of the proposed MCT and evaluate cost-effectiveness compared to

traditional LPTs.

Proposed System Features

	• •		
\checkmark	Modularity	\checkmark	Fail normal designs
\checkmark	Scalability	\checkmark	Manufacturability
\checkmark	Backwards compatibility	\checkmark	Transportability
\checkmark	Interoperability	\checkmark	OEM requirements
\checkmark	Voltage regulation	\checkmark	Overload capability
\checkmark	Power flow control	\checkmark	Protection

Storage integration

Metric	Units	Goal
Fail Normal Switch – Fault current carrying capability	А	20000 per 20 cycles
Multiple voltages	Number	Dual primary voltages - 24 kV and 12 kV
System efficiency	%	>98.8%
Power flow control	MVA	+/- 0.9 pu
Voltage regulation	%	+/- 8%
Impedance control	%	+/- 3%

Build Approach

Georgia Center for Distributed Energy

- 5 MVA Transformer
- 24 kV and 13 kV dual primary voltages
- Tertiary taps for converter
- Fail-normal switch integration

- Normally-closed switch + SCRs
- 20 kA for 20 cycles
- 250 A Nominal current
- 580 V
- Integration with transformer

3-level Stack from Semikron

Parameter	Value
DC Voltage	1500Vdc
Output current continuous	722Arms
Output voltage	540V-690Vac
Maximum output power	400 kVA
Switching frequency	5kHz
Power factor	-101
T _{amb}	40°C

Demonstration Plan

Test fail-normal switch at 20 kA for 20 cycles at NEETRAC, GT facility

Test 1.0 kV 400 kVA converter at CDE, GT lab

Test at 24 kV Grid Simulator facility, Clemson University

Project schedule, deliverables, and current status

Budget: \$2,293,347 (\$1,798,315 + \$495,032)

• Expenditure: Just started

Milestone	Completion Date	Status
Project Management and Planning	6/29/2019	Completed
Product Requirement Document	8/29/2019	In-Progress
Fail-Normal Switch	11/30/2019	
5 MVA Transformer Design and Build	8/30/2020	
400 KVA Converter tested	8/30/2020	
Test Site Preparation	12/30/2020	
Integration and Testing	5/30/2021	
System Analysis	11/30/2020	

Deliverable	Planned completion date
Project Management Plan	6/31/19
Data Management Plan	8/30/19
Design and build of a 24 kV/ 13 kV 5 MVA MCT with +/- 8% voltage injection capability. The 5 MVA unit will be tested at 24 kV test facility to verify the functionality. A detailed report of the test facilities will be generated.	5/30/21
Detailed report for specific use cases and scenarios developed to assess the impact and penetration level of the proposed MCT and evaluate cost-effectiveness compared to traditional LPTs,	2/28/21

Anticipated challenges and risk mitigation strategies

Risk	Likelihood	Impact	Potential Impact	Mitigation Strategy
Loss of testing facility	Low	High	Scope of project will be reduced or Significant delay in starting demonstration phase in Task 7.0	Build a 13 kV loop testbed at GT to demonstrate certain functionalities of the MCT
Limited test facility capabilities	Low	Low	Functionality demonstrated at a lower power level	
Loss of key individuals	Low	Low	Delay in certain tasks	Backup person is available for every key role
Failure of Converter components during testing	Medium	Low	Delay in demo Task	Redundant/ backup materials will be procured.
Damage of Converter components during shipping	Medium	Low	Delay in demo Task	Use sophisticated freight for safe transportation

Broader Impact

- The results of this project will be widely disseminated through technical conferences and publications.
- The research efforts will also result in graduate students at Georgia Tech and Clemson writing the results of their research in thesis documents, which will also be available.
- Finally, any reports emanating from this project work will also be available for unrestricted viewing.

Thanks

Deepak Divan (ddivan@ece.gatech.edu)
Prasad Kandula (krprasad@gatech.edu)

