

Integrated, Resilient Distribution Planning

Paul De Martini Newport Consulting

Electricity Advisory Committee

May 29, 2020

Distribution System Planning

- 3 principle aspects of modern distribution planning need to be integrated into a unified process
 - Resilience & Reliability
 - DER Integration & Utilization
 - Safety & Operational Efficiency
- Requires combining the grid needs identified from the 3 different planning analyses to assess overlapping needs
 - Resilience/Reliability Planning
 - Asset Planning
 - Grid Expansion/Modernization Planning

Addressing Complexity

Increasing DER/microgrid development & utilization combined with reliability and resilience considerations drive infrastructure planning & operational requirements

1	Customer		Stage 3: Community Microgrids & Distributed Markets	
System Complexity	Engagem	ent Stage 2: DER/Customer Microgrid Integration	DER export energy Sales at scale Grid sto Distribut	eed energy scheduling & dispatch rage for resilience ed computing and controls ve Distribution Designs
	Stage 1: Safety, Reliability & Resilience	 Customer Onsite Self-Supply Resilience Electrification Community Solar+Storage DER Services for Power System 	 DER Services Dispatch & Controls Secure DER Integration at scale Grid Modernization Resilience Enhancements Hosting Capacity Analysis DRP Planning & Roadmaps Distribution Voltage Upgrades 	
	Management Information & Pelia Decision Tools Aging		arational Efficiency Improvements ability Improvements ilience Foundational Measures ng Infrastructure Refresh ual Asset & System Planning	Distribution System
Time				Source: P. De Martini

3

Investment Hierarchy

Foundational investments are needed to support more advanced applications

Integrated Distribution System Planning

Process is driven by objectives that address policies, customer choice, and reliability/resilience priorities

Criteria

Grid Mod Strategy & Implementation Process

Grid modernization strategy and implementation planning is part of a more comprehensive, integrated planning process

- 5. Develop Detailed Architecture & Design
- 6. Technology Assessment & Selection
- 7. Develop Deployment Plan & Cost Effectiveness Assessment

Distribution System Platform

Logical layering of core components that enable specific applications

Green - Core Cyber-physical layer

Blue - Core Planning & Operational systems

Purple - Applications for Planning, Grid & Market Operations

Gold - Applications for Customer Engagement with Grid Technologies

Orange - DER Provider Application

Source: U.S. Department of Energy-Office of Electricity Delivery and Energy Reliability, 2017. Modern Distribution Grid, Volume III: Decision Guide.

7

Distribution Cost-Effectiveness Framework

Cost-effectiveness Methods for Typical

Best-Fit, Reasonable Cost for core grid platform and grid expenditures required to maintain or reliable operations as well as integrate distributed resources connected behind and in front of the customer meter that may be socialized across all customers.

Benefit-Cost Analysis for grid expenditures proposed to enable public policy and/or incremental system and societal benefits to be paid by all customers. Grid expenditures are the cost to implement the rate, program or NWA. Various methods for BCA may be used.

Customer Self-supporting costs for projects that only benefit a single or self-selected number of customers and do not require regulatory benefit-cost justification. For example, DER interconnection costs not socialized to all customers. Also, undergrounding wires at customers' request.

Assessing Threats

No single set of distribution resilience planning criteria

Threat based risk assessments are integral to understanding the potentia impact of various physical and cyber threats

Distribution resilience events involve various potential scales and scopes based on different events

- Scale and scope of potential events inform structural considerations and functional requirements
- Scale and scope shape the economic impact and related value of solutions

Need to also unpack distribution resilience to gain insights into the nature of grid failures and potential structural/design options

DSP Planning Inputs

Methods are needed to a) translate threat-based risk assessment with prioritization into planning objectives and criteria and b) coordinate planning between IRP and DSP

Resilience Threat Assessment and IRP inform Objectives/Criteria & Forecasts

Multi-Objective Distribution Planning

Integrate the planning "criteria" and needs for each of the relevant objectives

Future grid designs should address multiple criteria

Thank You

Contact: Paul De Martini, paul@newportcg.com

References:

https://mipsc.force.com/sfc/servlet.shepher d/version/download/068t0000005 XvREAA0 PG&E Wildfire Mitigation Plan 2020

https://www.pge.com/pge_glob al/common/pdfs/safety/emerge ncy-preparedness/naturaldisaster/wildfires/wildfiremitigation-plan/2020-Wildfire-Safety-Plan.pdf

🕖 Xcel Energy*

INTEGRATED DISTRIBUTION PLAN (2020-2029)

https://www.xcelenergy.com /staticfiles/xeresponsive/Company/Rates %20&%20Regulations/Integ ratedDistributionPlan.pdf HECO Resilience Planning

https://www.hawaiianelectric.com/ clean-energy-hawaii/integratedgrid-planning/stakeholderengagement/workinggroups/resilience-documents

