Demand Response National Trends: Implications for the West?

Charles Goldman

Lawrence Berkeley National Laboratory

Committee on Regional Electric Power Cooperation San Francisco, CA March 25, 2004

Overview of Presentation

- National Trends in Demand Response
- Integrating Demand Response into IRP Plans –
 Some Technical issues
- Incorporating DR as part of Utility Resource Portfolio: Policy Issues

Declining Load Mgmt Resources in most U.S. regions

- Uncertainties surrounding electricity restructuring
- Changing load resource balance

Increasing Policy Support from FERC and DOE

- National Transmission Grid Study Recommendations
- At a December 16, 2003, meeting of the PJM Demand Side Response Working Group, Alison Silverstein, Advisor to FERC Chairman Pat Wood, advised:
 - FERC wants demand response, "no matter what"
 - FERC is not kidding: prefer that we design and send up good programs and strong filings, instead of making them do it
 - FERC expects credible, quality programs that yield "big time" results
- DOE designated as lead for IEA study on Demand Response Resources

ISO "Emergency" DR Programs: Enrollment is increasing

 Steady growth in subscribed load, except for Active Load Mgmt in PJM.

DR Resource Targets: How much is enough??

- ISOs don't have explicit targets
- NYISO DR program exemplifies "best practice"
- ISO-NE needs more DR, particularly in congested areas (SW CT)

ISO "Economic" DR Programs: Enrollment is increasing, but performance lags

- Subscribed load increasing, particularly in PJM
- However, scheduled load curtailments are ~10-15 MW in NYISO day-ahead market

NYISO EDRP Program: Customer curtailments had significant impact on system reliability

- 1,711 enrolled participants in 2002 (1,481 MW)
- ~75% load curtailment: Onsite generation ~20%

ISO Payments for DR Programs

Year		Emergency Payments	Economic Payments
2001	ISO-NE	\$380	\$226,100
	NYISO	\$4,200,000	\$200,000
	РЈМ	\$287,500	\$14,000
2002	ISO-NE	\$1,800,900	\$172,000
	NYISO	\$3,300,000	\$100,000
	РЈМ	\$282,800	\$762,000
2003	ISO-NE	\$497,100	\$212,000
	NYISO	\$3,900,000	\$121,300
	РЈМ	\$26,600	\$678,200

Source: Neenan Assoc.

DR programs used during August 2003 Blackout Recovery Process

- NYISO called emergency DR programs on Aug. 15 and 16
 - Every MW of load taken off system allowed another
 MW to come up faster during rebuilding

Outage cos	st = \$5,000/MW			
Date	System State	Benefit	Cost	B/C ratio
August 15	Recovering	\$50.8 million	\$5.9 million	8.6
August 16	Fully recovered	\$3.5 million	\$1.7 million	2.1

Source: NYISO 2003 PRL Program Evaluation Summary

Understanding Customer Response: Performance Metrics

- Subscribed Performance Index (SPI): ratio of customer's actual average hourly load reduction to their subscribed load reduction
 - Indicates customer's actual performance relative to their commitment
- Peak Performance Index (PPI): ratio of customer's actual average hourly load reduction to their noncoincident peak demand
 - Characterizes customer's relative technical potential when compared to similar facilities
- Implications for system operators how reliable a resource?

NYISO: Customer Curtailment Potential is significant

 Mfg & Govt. Customers can curtail 30-40% of peak demand during emergencies

BERKELEY LAB

RTP as Default Service in States with Retail Competition

- Growing interest in RTP for large customers as default service tariff option in some states with retail competition:
 - NJ, MD, NY (Niagara Mohawk), OH, OR
- Migration to competitive suppliers with flat rate options
- Purchase of risk management products

Integrating DR into IRP plans: Some issues

- Defining resource potential: applicability of concepts and tools from EE technical and market potential studies?
- Typology of DR resources
- Scarcity of load data on which to estimate DR potential
- Limited experience on which to predict price response and customer risk preferences
- Lead times for new DR resources
- Model capabilities for integrating price response into resource portfolio evaluation?

Incorporating DR as part of Utility Resource Portfolio: Policy & Program Issues

- Role and responsibility of utility in current market setting vs. RTO environment
- Establishing incentive payment levels without a transparent wholesale market
 - ICAP markets (NY) vs. interruptible rate
- Capturing locational value of DR
- Coordinating delivery & implementation of DR and EE programs
 - EIS systems offer common platform for DR and EE
 - Portion of DR "savings" are operational & controls improvements

Incorporating DR as part of Utility Resource Portfolio: Policy & Program Issues (cont.)

- Environmental impacts of onsite generators
 - Coordination with local air quality regulators
 - Limits on use of emergency generators in DR programs ("emergency" vs. economic pgms)
- Recovery of program costs
 - Are incentive payments coming from retail or wholesale market customers?
 - Treatment of utility & non-utility entities

