Approach for Calculating OE Benefits

Electricity Delivery and Energy Reliability

Joe Paladino

October 29, 2007

Challenges

Analyzing the benefits of OE's portfolio requires overcoming several key challenges.

- Established benefits methodologies (e.g., NEMS and MARKAL) do not address some of the major benefits that OE's program will provide (e.g. reliability).
- Much of OE's program is about transforming the way the T&D infrastructure operates rather than replacing components:
 - Some technologies need a high penetration or must be deployed as an entire system to yield benefits (e.g. PMUs or Distribution Automation).
 - Some programs within OE are not developing "widgets" that can be easily counted.
 - OE is developing tools/methodologies or funding demonstrations that will enable and accelerate the deployment of new technologies.
 - OE is developing component technologies that will support new products (e.g. power electronics).
 - OE efforts will enable the enhanced utilization of renewable and distributed energy generation technologies.

Challenges

Analyzing the benefits of OE's portfolio requires overcoming several key challenges. (Continued)

- OE's portfolio leads to direct (T&D related) and enabling benefits. The enabling benefits may be substantially larger than the direct benefits.
- The buyer of OE's technology is likely to be regulated utilities, who have business models driven by utility regulatory economics with little reward allowed for taking technology risks.
- The large variance in physical, operations and market structures, especially at the distribution level, makes it difficult to simulate the impact of OE technologies using one grid simulation tool.
- A benefits estimation process will need to accommodate scenario analyses, e.g., examining the effects of varying fuel prices and changing GHG management strategies.
- A benefits estimation process will need to couple with other Departmental methods, and map into metrics associated with energy security, climate change concerns, and economics.

Issues with Grid Simulation Models (for GPRA Analysis)

- The large variance in physical, operations and market structures, especially at the distribution level,
 makes it difficult to simulate the application of OE technologies using one model.
- Different types of models are needed to represent the various OE technologies such as:
 - Dynamic power system model needed to see rapid grid stabilization by advanced power electronics (switching) technology
 - DC power flow model needed to examine impact of storage technology on reducing reserve requirements
- Utilities are in the best position to make technology investment decisions based upon their unique business and regulatory environments and DOE is not in the grid planning and operations business.
- There are too many variables to make rational inputs to grid simulation model on a national scale.

Conceptual Approach

The approach requires a business case, market analysis, and clear understanding of OE's role in technology and market development.

Application of Technology

The first step will be to agree on the products and services, and the primary markets, that will result from OE's R&D activities.

R&D Program Activities	Products and Services	Primary Markets		
Visualization and Controls	Phasor and other measurement devices	ISOs, RTOs, Control Centers		
	Control system evaluations	SCADA owners/operators		
	Visualization Tools	ISOs, RTOs, Control Centers		
High Temperature	Cables	Transmission and/or Distribution Companies		
Superconductivity	Transformers	Transmission and/or Distribution Companies		
	Motors	Manufacturing and Process Industries		
	Fault Current Limiters	Transmission Companies		
Renewable and Distributed Systems Integration	DG strategies and concepts (generation, storage, demand response)	Distribution companies, consumers		
	Distribution automation and AMI	Distribution companies		
Energy Storage and Power Electronics	Storage devices (batteries, flywheels, ultracapacitors)	Transmission and/or Distribution Companies		
	Solid state switches	Transmission and/or Distribution Companies		
	Solid state inverters	Transmission and/or Distribution Companies		

Business Case

Based on variable user inputs, annual benefits will be estimated from a spreadsheet model as shown in the example below.

Source: NCI Analysis

Market Penetration

Market analysis will be performed to determine the number of systems or installations to be deployed with OE developed technology.

Commercialization Pathways

Commercialization pathways will be developed to determine how OE impacts technology and market development.

Technology Development		Product Development		Market/ Business Development	
1 Research & Development	2	Demonstration		3 Market	4 Market
	Initial System Prototypes	Refined Prototypes	Commercial Prototype	Entry	Penetration
ongoing	2005	2008	2011	2014	2017
Technical Barriers					
Market Barriers					
Technology Performance Targets					
Milestones					

OE's Benefit Contribution

OE's benefit contribution will be determined by understanding how OE increases or accelerates market penetration.

Increasing Market Penetration

Accelerating Market Penetration

Plan

- Pilot methodology for:
 - Distributed Automation and Advanced Metering Infrastructure technology with final report due by end-March 2008.
 - Storage technology with final report by mid-September 2008
- Work with the Interoffice Working Group (IWG) to integrate the methodology into Departmental methodology throughout FY08
- Establish a set of peer reviewers to examine and comment on the methodology.