

### Energy Storage Deployment in PJM

Andrew Levitt, Applied Innovation October 16, 2019 U.S. Department of Energy Electricity Advisory Committee



#### Over 5 Gigawatts (GW) of Storage in ~180 GW PJM



\*\* Data taken from Generation Queue and EIA 860

Other Storage is about ~300 MW of mostly batteries.



of batteries connected on the distribution system 50% Connected to the Bulk Electric System.

Pumped Hydro currently participates in capacity, energy, regulation and reserves.



#### Regulation: actual imbalance vs. 10-min-ahead schedule

## ~Half the time, system actually needs a bit more power in real time than anticipated 10 minutes ahead of time. Half the time it needs <u>less</u> power.

- "Balancing Authorities" (e.g., PJM) dispatch resources 10-15 minutes ahead of time.
- Δ anticipated vs. actual conditions show up as "Area Control Error" ("ACE"):
  - A. Net exports/imports across an entire Balancing Authority **too high or low** vs. schedule
  - B. Possible change in interconnection system frequency (e.g., Eastern, Western, ERCOT) vs. 60 Hz (or other schedule).
- Resources providing "Regulation" respond to 4-second PJM dispatch to manage ACE.





#### Example Fast Regulation Dispatch and Battery Response



## pjm

#### Use Case: "Fast" Regulation in PJM



- Storage in PJM: "fast" Regulation\* in 2008.
- Now, no more "fast" Regulation needed\*\*.
- ~300 MW slow Regulation still on the table.





\*\*http://www.pjm.com/~/media/committees-groups/task-forces/rmistf/postings/regulation-market-whitepaper.ashx

\*\*http://www.pjm.com/~/media/committees-groups/task-forces/rmistf/postings/rts-curve-points-updated.ashx



\$

#### **Distribution/Utility** Non-Wire Value **Alternatives** Power Customer Quality Value Resilience Bill Management **RPM LMP PJM** Revenue Reg D

#### Multiple Use Storage

#### Village of Minster, OH

- Reducing Peak Load
- Voltage Control and Power Factor Correction
- Regulation (PJM Market)



Cost





**Grid Frequency Regulation from Microsoft data centers** 

Frequency Regulation from Light Rail Battery





#### **Multi-use Examples**

Ancillary
Services from
Campus Cogen



**Energy & Frequency Regulation** from Solar-Storage Microgrid



#### Solar-Storage Hybrids: ~ 4 Gigawatts in the PJM Queue





Thank you andrew.levitt@pjm.com



#### **APPENDIX**



#### Storage & Hybrids in the PJM Queue

# ~100 GW natural gas + standalone renewable resources





#### Hybrid Renewables + Storage

- Mostly>100 MW
- Several < 20 MW</li>
- Several in between

#### Standalone Storage

- Mostly < 20 MW</li>
- Several>100 MW



#### Not All Megawatts are Created Equal: Speed vs. Sustain



Fast Regulation signal and battery response



Slow Regulation signal and power plant response



#### University of Delaware/NRG Vehicle-to-Grid Resource

Example of electric vehicles generating ancillary services revenue

#### **Balance of Power**

The numbers behind the University of Delaware program using cars as a money-making reserve for the electric grid

| as a money making reserve to               | . the electric grid                                                                                    |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Cars used                                  | 23 (19 all-electric Mini E's, 3 modified<br>Scion xB's, 1 experimental Honda<br>Accord plug-in hybrid) |
| What they do                               | Store or discharge electricity according to grid needs                                                 |
| Special equipment needed                   | Control board, \$200-\$300 per car                                                                     |
| Power of car batteries                     | 12 kilowatts per vehicle*                                                                              |
| Minimum capacity needed for a grid "bank"  | 100 kilowatts/9 cars                                                                                   |
| Time connected to grid                     | 24/7 except when being driven                                                                          |
| Average daily driving time                 | About an hour per car                                                                                  |
| Monthly revenue per car from grid operator | About \$150                                                                                            |
| Monthly electricity cost/car               | About \$40                                                                                             |
| Monthly profit                             | About \$110 per car/\$2,500 total                                                                      |

<sup>\*</sup>For Minis and Scions. Honda power not disclosed.

Source: University of Delaware The Wall Street Journal



https://www.wsj.com/articles/electric-vehicles-sell-power-back-to-the-grid-1411937796

