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Message from the Assistant Secretary

| am pleased to present the 2018 Smart Grid System Report, which is intended to provide a
status of smart grid deployments nationwide, resulting benefits, and the challenges yet
remainingas we move forward with the modernization of the electric grid. It covers smart grid
developments since the prior Smart Grid System Report submitted in August 2014. Over the
past ten years, we have witnessed the accelerated deployment of technologies meant to
improve the reliability and efficiency of utility operations, including the deployment of systems
and practices to better engage utility customersin the management of energy. Throughoutthis
time, the Department has worked closely with both utilities and state regulators to convey best
practices and enable a better understanding of the potential value of smart grid systems.
However, we also recognize that the application of smart grid technology dependslargelyon
the specific needs of utilities, the preferences of their customers, and the respective policies of
stateand local jurisdictions. Asaresult, the pace and scope of smart grid technology
deploymentis occurring differently across the country as local needs may dictate.

Smart grid deployment is traditionally based on improving utility operations at both the
transmissionand distribution grid levels. Since 2010, we have seen accelerated deployments of
advanced meteringinfrastructure, systems to improve voltage and outage management, and
synchrophasortechnology to enhance situationalawareness. However, in the past five years,
we are now witnessingthe rapid adoption of distributed technologies, such as photovoltaic
systems, and increasingownership of these distributed assets by utility customers and third-
party merchants. The proliferation of distributed devices is driven largely by state policies,
lowering technology costs, and changing customer expectationsand is not occurring
consistently acrossthe country. Where itis happening, therisein the number of distributed
technologies and their ownership by entities other than utilities significantly increases the
complexity of grid operationsand poses challenges to traditional approaches for grid planning
and market designs.

Addressingthe emerging complexity will require the deployment of advanced grid capabilities
based largely on the application of smart grid technology. This willinclude the continued
development of a variety of technologies and improved strategies for grid sensing, information
management, communications, control, and coordination. In this effort, we will also need to
ensure the affordability, reliability, resilience, and security of the electric grid. The Department
will continue to work closely with the electric utility industry and federal and state agencies to
determine prudent approaches for deploying smart grid technologies.

Pursuant to statutory requirements, we are providing this report to the following members of
Congress:

e The Honorable Rodney Frelinghuysen
Chairman, House Committee on Appropriations
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The Honorable Nita Lowey
Ranking Member, House Committee on Appropriations

The Honorable Michael Simpson
Chairman, Subcommittee on Energy and Water Development
House Committee on Appropriations

The Honorable Marcy Kaptur
Ranking Member, Subcommittee on Energy and Water Development
House Committee on Appropriations

The Honorable Richard Shelby
Chairman, Senate Committee on Appropriations

The Honorable Patrick Leahy
Vice Chairman, Senate Committee on Appropriations

The Honorable Lamar Alexander
Chairman, Subcommittee on Energy and Water Development
Senate Committee on Appropriations

The Honorable Dianne Feinstein
Ranking Member, Subcommittee on Energy and Water Development
Senate Committee on Appropriations

If you have any questions or need additional information, please contact me or Ms. Bridget
Forcier, Associate Director of External Coordination, Office of Chief Financial Officer, at
(202) 586-0176.

Sincerely,

Office of Electricity
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Executive Summary

This report conveys the status of smart grid deployments across the nation, the capabilities
they provide, and the challenges yet remainingas we move forward with the modernization of
the electric grid. UnderTitle XlIl of the Energy Independence and Security Act of 2007 (Public
Law 110-140), the DOE Office of Electricityis required to provide the status of smart grid
deployments and related challenges every two years.

Over the past ten years, we have witnessed the accelerated deployment of technologies meant
to improve thereliability and efficiency of utility operations, includingthe deployment of
systems and practices to better engage utility customersin the management of energy. This
hasincluded increased deploymentsof advanced meteringinfrastructure, systemstoimprove
voltage and outage management, and synchrophasor technology to enhance situational
awareness. However, more recently, we are witnessingthe rapid adoption of distributed
technologies, such as photovoltaicsystems, and increasing ownership of these distributed
assets by utility customers and third-party merchants. The effective integration of the grid with
distributed assets presents a more complex and, potentially, transformative situation that will
require the deployment of advanced grid capabilities basedlargely on the application of smart
grid technology.

The smart grid is enabled by digital technology applied in devices and systems that allows for
enhanced sensingand control of grid elements, more widespread informationsharingand
communication, more powerful computing, and finer control. Theintegration of digital
structure with the physical structure of the grid is evolvingrapidly due to the enhanced
performance and declining costs of digital technology. Digital networks will eventuallylead to
greater levels of information exchange between utilities and their customers, as well as the
convergence of the electric grid with otherinfrastructures such as buildings, transportation,
and telecommunications.

U.S. utilities invested approximately $144 billion in electricity generation, transmission, and
distribution infrastructure in 2016 (the latest year of available data). Investor-owned utilities,
serving 73% of U.S. electricity customers, spent $21 billion and $27 billionin 2016 on
transmission and distribution delivery infrastructure, respectively. Annual smart grid
investments rose 41% between 2014 and 2016 from $3.4 billionto $4.8 billion and are
expected to rise to $13.8 billionin 2024. The high capital costs and long lifespans of
transmission and distribution infrastructure make it vitallyimportantthatinvestments made
today can support an evolving grid for decades to come.

This report discusses in greater detail the key findings and recommendations given here:

1. Smart grid technologyis beingdeployed to improve operational efficiency, reliability
and resilience, but also to address the integration and utilization of distributed energy
resources (DERs) where they are beingadopted.
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The integration ofinformation technologies and operational technologies (IT/OT
integration), cloud computing, and information networks represent major aspects of
smart grid deployment. Standardsand protocols,such as IEC 61850 and IEEE 1547, are
beingdeveloped and applied with significant efforts by the private sector and industry-
led groups to ensure interoperability and security. However, continued assessment by
the federal governmentis recommended to ensure thatinteroperability and
cybersecurity standards evolve and are implemented at a pace sufficient to support
needed technology deployment.

A combination of federal and state policies, improvements in technology performance
and costs, and customer preferences for generatingand managing energy is challenging
traditional approaches for grid planning, operations, market design, and business
models. These forces will require a transformation in the structure and functional
capabilitiesofthe electric grid and drive a need for holisticapproachesin determining
smart grid technology deployment strategies.

In 2017, 39 states plus the District of Columbia took a total of 288 policy and
deployment actionsrelated to grid modernization, integrated resource planning, the
application of DERs as non-wires alternatives, utility business models, rate reform, and
the application of advanced meteringinfrastructure, energy storage systems, and
microgrids. Progressive state policies, combined with favorable business incentives,
have promoted the rapid adoption of DERs. Where thisis occurring, the rate of
technological change can outpace the ability of regulators and utilities to develop
informed grid modernization strategies, especially because smart grid implementation
decisions need to enable an effective transition from legacy systems to grids with more
advanced capabilities.

The increasing presence of renewable generation and the proliferation of customer-and
merchant-owned DERs are introducing significantly greater levels of variability and
uncertainty in both the supply of electricity and the demand for it. Generationand load
profiles, which have been predictablein the past, can now vary instantaneously and are
subject to the behavior of consumers where DERs are present. This new situation
requires improved visibility into resources not owned by utilities, the ability to control
and coordinate an increasing number of assets and endpoints, and grid systems that can
readily adaptto conditions within sub-second timeframes.

State regulators and utilities will need comprehensive strategies forimplementing smart
grid technologies to address this complexity. Toward this end, efforts by the
Department to assist regulators and utilities in better understanding the structural and
functional requirements for an advanced grid should continue, includingadvancingthe
practice of grid architecture as a discipline to impart a holisticplanning capability. Grid
architecture helps tounderstand the interrelationships between the cyber, physical,
industry, market, and regulatory structures to enable the implementation of scalable
and coherent grid designs.
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7. Integrated planningapproaches are needed to achieve a coordinated strategy for smart
grid technology deployment across the transmission, distribution and customer
domains. Thisisimportant where high levels of DERs are deployed, as they present
operational issues, yet also provide value in terms of generating capacity, energy,
frequency support, and other grid services. Cross-jurisdictionalcoordinationisrequired
to effectively implement the appropriate mix of control schemes and market
mechanisms.

8. As utilities, customers, and third-party merchants begin to share responsibilities in the
provision of grid services, the traditionalbusinessmodel, especially at the distribution
system level, will change. This will require re-defining respective roles and
responsibilities; transitional strategies are currently beingexamined but do not yet exist
due, in part, to the lack of fair compensation practices for both utilities and other
participants. Inaddition, regulators, utilities, and the various participantswill need to
definethe rules governing the interfaces between devices. These rules would cover
physical, electrical, control, and communication requirements, along with business
terms. Such coordination mechanismswill present requirements for smart grid systems.

9. Increasingdigital connections between utilities, customers, and various service
providers creates new entry points that may expose the electric grid to new cyber risks.
However, smart grid technologies can also build in resilience, adding visibility and
adaptablecontrolsthat can support cyber attack detection and response. Building
cybersecurity into smart grid devices and networks as they evolve requires advanced
R&D that anticipates future grid scenarios, improved cybersecurity and interoperability
standards and guidelines, and coordinated approachesfor addressing cyber system
restoration.

10. To address the demands envisioned for a future grid, advances in technology are
required. Key technological effortsinclude the development of:

a. Modelingand analysistools for both planningand operations purposes that
addressvariability and uncertainty and apply probabilisticand predictive
approaches forreducingrisk. The tools needed will consume vastly greater
amounts of data, operate at higher speeds, enable the determination ofa range
of optimal solutions, and permit automated control.

b. Control capabilitiesbased on real-time situational awareness and that enable the
effective dispatching of resources.

c. Solid-state hardware componentsthat are more dynamic, adaptable, and robust,
particularly power electronics devices that can control the direction and
magnitude of power flow.

d. Inexpensive and high-performingenergy storage technologies that can provide
significant flexibility and resilience for grid operations.
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e. Advanced cybersecurity technologies and next-generation resilient and adaptive
control system designs that can automatically prevent, reject, and withstand

cyberintrusions, allowingcritical functions to continue operating, even while
under attack.

11. The retention of qualified and diverse employeesis a challenge many now see as
outpacingtheissue of an aging workforce, as skills requirements are changing rapidly
dueto grid modernization. The application of digital technology, in particular, is
requiring a greater number of highly technical workers and engineers that can build,
manage, and protect these systems. Asa result, the electricindustryis continuingto
face challengesin attracting, recruiting, and hiring qualified applicants.
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I. Legislative Language

According to Title Xl of the Energy Independence and Security Act of 2007 (EISA),? “[i]t is the
policy of the United States to support the modernization of the Nation’s electricity transmission
and distribution system to maintain a reliable and secure electricity infrastructure that can
meet future demand growth and to achieve [a set of requirements that] together characterize a
Smart Grid.” The U.S. Department of Energy (DOE) Office of Electricity (OE) prepared this Smart
Grid System Report for Congress as required by Section 1302 of EISA, which directs the
Secretary of Energy, actingthrough the Assistant Secretary of OE, to:

“report to Congress concerning the status of smart grid deployments nationwide
and any regulatory or government barriers to continued deployment. The report
shall provide the current status and prospects of smart grid development, including
information on technology penetration, communications network capabilities, costs,
and obstacles. It may include recommendations for State and Federal policies or
actions helpful to facilitate the transition to a smart grid.”

This 2018 Smart Grid System Reportincludesinput from the DOE Electricity Advisory
Committee (EAC) and staff from other federal agenciesin Federal Smart Grid Task Force,
includingthe U.S. Department of Homeland Security (DHS), the Federal Energy Regulatory
Commission (FERC), and the National Institute of Standards and Technology (NIST). This report
covers developmentsin the national smart grid landscape since the prior Smart Grid System
Report submitted in August 2014.

II. Introduction: Making the Grid “Smart”
A. What Has Changed?

Since the 2014 Smart Grid System Report:
e Cost-shared government and industry investmentsunder the American Recovery and

Reinvestment Act (ARRA) concluded in 2015, creating valuable lessonslearned.®

e Rapid deployment of several smart grid technologies has occurred, with an upward
trend of investment expected given new technologies and state policies.

e Fallingprices and supportive policies have spurred rapid adoptionin some regions of
renewable and distributed energy resources (DERs), creating some challengesin grid
operations.

aTitle Xl resides within Sections 1301 — 1309 of EISA. Energy Independence and Security Act of 2007, PublicL. No. 110-140,
121 Stat. 1492 (2007).
® The numerous reports and findings generated through the ARRA-funded smart grid projects can be found at:

https://www.energy.gov/oe/information-center/recovery-act
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e State regulatorsand policymakers have approached DOE and the nationallaboratories
for technical assistance regarding smart grid technology business cases, regulatory
approaches, and planningstrategies.

e State-, national-and international-level discussions are taking place on the
transformation of the electric grid, especially at the distribution system level, with
respect to future structural and functional requirements, prudenttechnology
investment strategies, utility business models, and coordinated planningand operations
across thetransmission, distribution, and customer boundaries.

B. What Makes the Grid Smart?

In short, the digital technology that allows for enhanced sensingand control of grid elements,
more widespread information sharingand communication, more powerful computing, and finer
control is what makes the grid smart. In much the same way thatthe Internet and smart
devices have impacted many aspects of our lives and changed the way we access and apply
information, digital technology enhances operational control and decision-making. Italso
enablestheintelligent networking of grid systems with other infrastructures, such as buildings
and transportation systems.

Smart grid systems consist of digitally based sensing, information management,
communications, computing, and control technologiesand field devices that function to
coordinate multiple electricgrid processes. The application of information technology (IT)
systems enables utilities to handle greater quantities of data that allow for more effective and
dynamicgrid operations. Smart grid deploymentsinclude three key elements:

1. Smart field devices and sensors within the physical grid infrastructure that can
monitor or measure processes, communicate data back to operations centers, and
often respond to digital commands or function automatically to adjust a process.
Utilities are installing millions of digital devices, such as smart meters, phasor
measurement units¢and intelligent electronic devices,® throughout the transmission
and distribution grid for sensingand control purposes.

2. Communications networks that share data among devices and systems.
Communications networks with the right speed and size are foundationalinvestments
that can serve multiple existingand future smart grid applications.

3. Information management and computing systems that can process, analyze, and help
operators access and apply the data coming from digital technologies throughout the
grid. Usingsmart grid technologiesto their full potential often requires utilitiesto
substantially upgrade and integrate multiple information management systems.

¢ A phasor measurement unit (PMU) is a device that measures voltage and frequency at a point on the grid and
provides time-stamped data many times per second.

4 Anintelligent electronic device (IED) is a term used in the electric power industry to describe microprocessor-
based controllers of power system equipment, such as circuit breakers, transformers and capacitor banks.
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Advancementsin modelingand analysis are movingtoward the application of
probabilisticand predictive approaches for grid management.

A smart grid uses digital technology to improve the reliability, flexibility, security, and efficiency
of the electricity system—key ingredientsin the ongoing modernization of the electricity
deliveryinfrastructure. EISATitle XIll makes it U.S. policy to support grid modernization to
achieve the following smart grid characteristics:

1.

10.

Increased use of digital informationand controls technology to improve reliability,
security, and efficiency of the electric grid.

Dynamic optimization of grid operations and resources, with full cybersecurity.

Deployment and integration of distributed resources and generation, including
renewable resources.

Development and incorporation of demand response, demand-side resources, and
energy-efficiency resources.

Deployment of “smart” technologies (real-time, automated, interactive technologies
that optimize the physical operation of appliances and consumer devices) for metering,
communications concerning grid operations and status, and distribution automation.

Integration of “smart” appliances and consumer devices.

Deployment and integration of advanced electricity storage and peak-shaving
technologies, including plug-in electricand hybrid electric vehicles, and thermal-storage
air conditioning.

Provision to consumers of timely informationand control options.

Development of standards for communicationand interoperability of appliances and
equipment connected to the electric grid, includingthe infrastructure servingthe grid.

Identificationand lowering of unreasonable or unnecessary barriers to adoption of
smart grid technologies, practices, and services.

Smart grid technology is the essential ingredient that enablesa diverse energy mix, increased
participation by customers, and resilient and reliable grid operations.
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III. Evolution of Grid Intelligence

The many definitions ofa “smart grid” typically define the characteristics or capabilities that it
enables. Forexample, the Electric Power Research Institute (EPRI) defines a smart grid as
follows:

“A smart grid is one thatincorporates information and communications technology into every
aspect of electricity generation, delivery, and consumptionin order to minimize environmental
impact, enhance markets, improve reliability and service, and reduce costs and improve
efficiency.”’

A smart grid applies digital technology to the sensing, communication, computing, control, and
information managementfunctionsofthe electric grid. The digital technologyisembodied
within microprocessors that interface with physical devices, communications systems that
transmit and share data, solid-state devices that can manipulate voltage and current, and
computersthat process and displayinformation. The use of digital technology has greatly
improved the operational performance of the grid, and is providing new capabilitiesand
insights through the enhanced management, analysis, and sharing of information. Withthe
application of digital technology in the workings of the grid’s electromechanical systems, it is
now meaningful to consider a digital cyber layerand a physical layer as an integrated “cyber-
physical” set. The extension ofthe cyber layer to electricity customers and third-party service
providers permits a shared approach in grid operations, as well as operational convergence
with otherinfrastructures, such as buildings, transportation, and various other utility-based
infrastructures (e.g., water and natural gas systems).?

The integration of digital technology with the grid’s electromechanical systems has evolved
over several decades. The beginningof thisintegration occurredin the 1960s when engineers
began to deploy supervisory control and data acquisition (SCADA) systems to automate the
monitoringand control processes associated with complexindustrial or manufacturing
operations. Theintroduction of SCADA in transmissionand distribution substations beganin
earnestduringthe late 1970s. These SCADA systems employed microprocessors that directly
interfaced with devices in the physical world, telemetry-providing communications, and
computers situated at master stations in transmission and distribution control centers.?

SCADA systems, including other distribution management systems, have advanced from using
vendor-based proprietary protocols to applyingopen communications standards and protocols
(e.g., the Internet Protocol Suite®) enabling such systems to interface with devices from
multiple vendors, as well as take advantage of advancementsin improved techniques for
system analysis and operations. SCADA technologyis now integrated with other systems (e.g.,
outage management systems), collectively referred to as operations technology (OT), which are

€ The Internet Protocol Suite is the conceptual model and set of protocols that enables a standardized approach for
supporting communications between devices. IP-based communications (networking) systems can use fiber-optic,
radio and other means for conveying data. Use of the IP suite does not necessarily imply use of the internet itself.
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responsible for monitoringand controlling field devices connected to the electric grid.f Such
operations will become increasingly complex as we increase the number of devices connected
to thegrid. Various OT functionsinclude:

e (Qutage management functions, includingfaultlocation, isolationand system restoration
(FLISR).

e Voltage and reactive power management.
e System monitoring, control and protection, including state estimation.

e Dispatch and control of grid devices, such as circuit breakers, field switches, and power
electronics.®

e Dispatch and control of resources including central power generation units and DERs."

In parallel with OT deployment, utilities have applied enterprise information technology (IT) to
manage business processes, such as billingand revenue collection, asset trackingand
depreciation, and workforce management. TheIT systems, based on company enterprise and
personal computing technology, apply software systems that permit many users to access
utility-wide data through a variety of applications. The convergence of IT and OT systems is
providing new analytical capabilities and significant operational benefits, leadingto an
information-driven electricgrid. Therange of technology developments associated with IT/OT
convergence include the following:*

e Technology costs to collect and transmit operational data continue to decrease.

e The softwareunderlyingmany OT applicationsuses standard IT computing platforms,
making it possible to merge these resources, including options to employ cloud
computing with higher-scale computing capacity.

e The application of “middleware”’ is making it possible to linkand integrate disparate
sets of data, enablingadvanced data analysis.

fOT systems used by transmission grid operators are called energy management systems (EMS), while those used
by distribution grid operators are called distribution management systems (DMS).

& Power electronics represent a class of devices that apply solid-state technology to manipulate current, voltage,
and frequency in electrical systems, thereby managing the character and flow of power.

h The National Association of Regulatory Utility Commissioners (NARUC) defines a DER as “a resource sited close to
customers that can provide all or some of their immediate electric and power needs and can also be used by the
system to either reduce demand (such as energy efficiency) or provide supply to satisfy the energy, capacity, or
ancillary service needs of the distribution grid. The resources, if providing electricity or thermal energy, are small
in scale, connected to the distribution system, and close to load. Examples of different types of DER include solar
photovoltaic (PV), wind, combined heat and power (CHP), energy storage, demand response (DR), electric vehicles
(EVs), microgrids, and energy efficiency (EE).” NARUC, Distributed Energy Resources Rate Design and
Compensation, 2016.

" Middleware represents the hardware and software solutions that allow existing applications to communicate and
share information.
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e Interoperability standards have been developed and employed, although further
maturation of such standards is crucial to facilitating further IT/OT convergence. Several
organizations, includingthe International Electrochemical Commission (IEC) and the
Institute for Electrical and Electronics Engineers (IEEE), are developing smart grid
interoperability standards.

e The escalationin mobile computing, data access, and even digital photographyis
providingfield crews with more access to operationaldata, somein real time, which is
substantially changing distribution activities such asinspections, field resource
optimization, and inventory tracking.

This convergence is not occurring at the same pace across theindustry, but ratheris being
driven by exogenous factors that are accelerating grid modernization. However, utilities are
seeing many benefits that result from IT/OT convergence. For example, the sharingof historical
and real-time data across utility processes that were traditionally siloed provides a new set of
opportunities. An emergingtechnological capabilityis the advanced distribution management
system (ADMS) which is a software platform that supports the full suite of distribution
management functions. Thisincludes historicaloperational data for planning, operational
engineering data for system protection, and real-time operationssupport, including power flow
control, automated outage restoration, voltage management, asset management, and DER
dispatch and control. Theinformation shared across these functions combined with a
knowledge of grid assets provided through geographicsystems, current conditions through
network models, and customer behavior through advanced meteringdata, provides significant
operational intelligence and efficiency to utilities.

The collection and analysis of system data will improve utilities’ ability to economically manage
assets, improve load forecastingand planning, provide intelligence to minimize faults and
outages, and enable more proactive customer services. The market for utility data analyticsin
the United States is expected to reach $1.4 billion with a 60% market share by 2022 ($3.8 billion
worldwide), as compared to $300 millionin 2012.> Asshown in Figure 1, the field of data
analyticsis expected to progress from applyingdata for basic reporting to providing utilities a
predictive capability and, beyond that, enabling self-learningand optimization through the
application of artificial intelligence and other machine-learning techniques.® This willinvolve
collectingand synthesizing massive amounts of data from millions of smart sensors and devices
to make timely decisions on how to best allocate resources.’
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FIGURE 1. EVOLVING CAPABILITIES AND COMPLEXITY OF DATAANALYTICS
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Grid modernizationinvolves more than IT/OT integration because the essential structure of the
grid is changing due to customer adoption of DERs and public policies driving utilization of DERs
as grid resources. As a result, regulators and utilities are re-thinking the design and operation
of the grid to create more open and transactive electric networks. Thiswould lead to the
development of open networks to enable the interaction of intelligent devices on the grid and
the ability for consumers, utilities and other entities to participate and transact. Such networks
can provide significant value through optimization and enhanced services as has been observed
in the telecommunications industry.) Furthermore, additional value can be derived from the
convergence of two or more networks or systems by sharingresources and enablingnew value
streams.® The convergence of the electric grid with buildingand transportationinfrastructures
is an example where shared resources, e.g., communication systems and computing, can enable
more integrated and efficient operations, while fostering the growth of value-added services,
such as applications to coordinate electricvehicle logistics.

In this discussion, itis important to note that grid modernization is advancing at different rates
across the country based largely on state policies and where deployment of advanced
technologies makes economic sense. Also, the adoption and application of DERs by utility
customers and various merchants will impact grid operationsand require the use of more
advanced sensing, communication, computingand control capabilities. Asa result, regulators
and utilities are faced with determining prudent strategies for the deployment of advanced grid
capabilitiesto address this challenge.

I A conceptual value model (Metcalfe’s Law) put forward by Robert Metcalfe in 2007 states that the potential value
of a network is proportional to the square of the number of connected users of the system. Hence, network value
increases exponentially as we increase the number of nodes that can communicate on the system.
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IV. Smart Grid Investment and Deployment

A. Decade of Increasing Grid Infrastructure Investment

Despite relatively flat growth in electricity demand, capital infrastructure investment in the
electric power industry is nearly twice what it was a decade ago,’ as utilities continue to invest
in new renewable and natural gas generation resources, upgrade and harden aging physical
infrastructure, expand transmission capacity and flexibility, and build in more intelligent
systems.

U.S. utilities—includinginvestor-owned utilities (IOUs), public power providers, and
cooperatives—invested about $144.5 billion in electricity generation, transmission, and
distribution infrastructure in 2016 (the latest year of available data).* Major 10Us alone, which
serve about 73% of U.S. electricity customers, spent about $48 billion on the transmissionand
distribution grid that delivers electricity to customers (about $21 billion and $27 billion,
respectively). Theyspentanother $65.5 billion on generation, gas pipeline, and storage
infrastructure, environment, and other capital investments, for a total capital expenditure of
about $112.5 billionin 2016.°

FIGURE 2. CONSTRUCTION EXPENDITURES BY 10US FOR TRANSMISSION AND DISTRIBUTION, 1990-
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The steady uptickin grid investment coincided with rapidly declining wind and solar generation
costs, growing supplies of low-cost domestic natural gas, a series of increasingly extreme and
costly weather events (including Superstorm Sandyin 2012), and a widening national spotlight

k Based on information reported to DOE from EEI, APPA,and NRECA. EEl reported total expendituresat $112.5 billionforlOUs,
APPA reported $7 billion for publicpower utilities, and NRECA reported $25 billion forelectriccooperativesin 2016.
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on reliability and resilience as cyber and physical threats grow more severe. Risingcapital
investmentsin transmissionand distributioninfrastructure (see Figure 2) now take up the
largest share of total capital spending by major 10Us.*

The transmission system, often called the bulk electric system, includes the high-voltage lines
that carry large amounts of electricity from generating plants over long geographic distances to
distribution substations. The last few years have seen record spendingin transmission
infrastructure—nearly tripletheinvestment rates of a decade earlier—to expand, upgrade, or
replace towers, fixtures, station equipment, overhead conductors, and other components.
IOUs invested $20 billion in transmissioninfrastructure in 2016.

Transmission expansion and upgradeshave largely been made to access power from new
generation installations (especially renewable resources) and carry it to load centers; replace
and harden aging infrastructure; relieve congestion; accommodate regional populationand
load shifts; improve reliability and security to meet new standards; and access cheaper power
available through restructured markets.*? Increasinglaborand construction material costs also
contributed to therise ininvestment.

Distributioninfrastructure investmentoften cycles as equipment wears out and is replaced.
Figure 2 also shows that distribution investments by IOUs have grown incrementally since 2009,
reachinga high of $27 billionin 2016. The largestinvestments were in poles and fixtures,
overhead conductors, and station equipmentto not only replace butalso upgrade and harden
the system against outages from the growing frequency of extreme and high-cost weather
events, from hurricanes and storms to fires and floods.*?

Several out-year projections show high capital investment is expected to continue over the next
several years as utilitiesreplace aging components and build in flexibility, intelligence, and
resilience.'* The high capital costs and long life spans of transmission and distribution
infrastructure make it vitally important that investments made today can support an evolving
grid for decades to come. A growing proportionofthisinvestment will go toward smart
infrastructure, the intelligent field equipmentand the information, communication, and control
systems that will allow utilities to operate the grid with greater visibility, flexibility, precision,
and speed.

B. Growing Investment in Smart Grid Devices and Systems

There is no one comprehensive source of data on the cost and rates of smart grid technology
deployment or projection, and investment categories are often difficult to compare across
sources. Thissection uses several sources to demonstrate a steadyrisein smart grid
infrastructure investment and the factors that have driven rapid deployment of smart grid
technologies that were still considered nascent less than a decade ago.

According to Bloomberg New Energy Finance, U.S. utilitiesin 2016 invested an estimated $3.4
billion in smart grid technologies at the distribution level, about 13% of the $27 billion spent on
distribution infrastructure by large 10Us.*® Since 2008, U.S. utilities have invested $31.6 billion
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in distribution-level smart grid technologies (see Figure 3), a higherinvestmentratethan
predictedin 2014. Actual spendingfrom 2014 -2016 was roughly 25% higher than forecasted
by Bloombergin 2014.%®

FIGURE 3. DISTRIBUTION-LEVEL SMART GRID SPENDING, BILLIONS
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Source: Bloomberg New Energy Finance World Factbook, 2017

The spikein investment startingin 2010 was due largely to $9 billion of public-private
investments in smart grid deployment from 2010-2015 under the ARRA.!

The Bloombergestimatein Figure 3 excludes smart grid deployment at the transmission level,
alongwith the costs of new and integrated operational control and management systems, a key
upgrade needed to maximize the use of new smart grid devices and data for improved grid
control.

A more complete analysis by Newton-Evans estimates that U.S. utilitiesin 2016 invested a total
of $4.8 billion in smart grid technologies and the associated information, communication, and
control systems. Thisrepresents about 10% of the $47 billion in transmission and distribution
infrastructure spending by IOUs.

Newton-Evans analysis shows that annual smart grid investment rose 41% between 2014 and
2016, from $3.4 billion to $4.8 billion (Figure 4). This analysis makes an important distinction
between the estimated $2.1 billion spent on “pure” smart grid devices or networksin 2016,
and investment in smart-grid-related IT, including $1.8 billion on smart-grid-related IT for
operational systems (such as substation automationand control systems) and $0.9 billion on

' DOF’s Office of Electricity received $4.5 billion in Recovery Act funding to support smart grid investments,
including funding for the Smart Grid Investment Grant (SGIG) and Smart Grid Demonstration Programs, which
consisted of 131 cost-shared deployment projects with the energy industry.
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smart-grid-related IT for administrative systems (such as smart meter data managementand
billing systems).

Figure 4 shows how smart grid investments will increasingly converge traditional information
technology systems with operational control technology. Newton-Evansforecasts significant
growth in utility IT spending over the next decade, and the large majority of that growth will be
in “pure” smart grid devices and supportinginformation management and control technology.
The forecast estimates that annual smart grid investment will double between 2014 and 2018,
and will double again by 2022. By 2024, annual smart grid spendingis expected to be $13.8
billion—making smart grid a more significant portion of total spending on grid assets.

FIGURE 4. ANNUAL SMART GRID INVESTMENT (OF TOTAL GRID INFORMATION AND CONTROL
TECHNOLOGY INVESTMENT)
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Source: Newton Evans, 2017; Data represents total electricity sector, as extrapolated from market studies and direct
surveys representing 10%-30% of U.S. or North American markets, either in terms of customers served, number of
substations, or revenues.

Several key factors have driven smart technology investment over the last several years—and
may accelerate adoptionin the coming decade:

e Cost-shared deployment underthe Recovery Act reduced the risk of early investment,
put millions of new digital technologies and operational systems on the grid, and
supported vendor marketplace maturity, resultingin falling device costs and greater
choices.
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e Thosecommitments accelerated utility smart grid plans by as much as a decade, helped
train the workforce, advanced conversations on codes and standards, and
demonstrated expected benefitsand cost savings that were not yet proven—pavingthe
way for widerindustry adoption.*’

e The economy’sgrowingreliance on power requires a more resilient power grid,
particularly as weather-related disruptionsand cyber threats are on therise. Utilities
are increasingly usingautomated controls and self-healing functions to prevent major
blackouts, limit outages, restore faster, and enable microgrids that can keep powering
critical facilities during disruptions.

e Decliningprices of distributed technologies like rooftop solar and electricvehicles—
particularlyin states with high incentives and renewable energy targets—are rapidly
requiringfasterand more robust control capabilities than current systems allow.

C. Smart Grid Technologies: Deployment Trends and Benefits

This section provides key examples of innovative smart grid deployments and resulting benefits
in the followingtechnology areas:

e Advanced transmission system technologies for wide-area visibility and control

e Advanced distribution system technologies for self-healingautomation, equipment
health monitoring, and voltage optimization

e Advanced metering infrastructure

e Smart customer devices and energy management systems that enable demand
response

1. ADVANCED TRANSMISSION SYSTEM TECHNOLOGIES

Smart grid advancementsin the transmission system are focused on giving operators better
system visibility, faster response, more effective decision-making, automated protection, and
greater control.

Synchrophasor technology

One of the most impactful innovations has been the widespread deployment of synchrophasor
technology which involves the application of PMUs to deliver precise, time-synchronized
measurements of voltage and frequency™to transmission grid operators. Current SCADA
systems deliver observations about grid conditions every 4 to 6 seconds,*® whereas PMUs can
provide observations 30 times or more per second. Each PMU measurement is location-and
time-stamped permitting grid operators to better observe power grid dynamics, e.g., changesin

™ The frequency of the electric grid in the United States is kept tightly at 60 hertz (+/- 0.5 Hz), or 60 cycles per
second. One cycleis equivalent to approximately 16 milliseconds. At 60 Hz, the current (movement of electrons)
in our (alternating current) wires reverses direction 120 times per second.
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frequency and power flow across the system, with microsecond accuracy, which cannot be
provided by traditional SCADA. Figure 5 shows how PMU data can more quickly and accurately
detect an oscillation, which was then corrected. Such oscillations are indicative of system
anomaliesthat can potentially lead to catastrophicsystem failure if left unaddressed.

FIGURE 5. TRANSMISSION GRID OSCILLATIONS AS SHOWN BY SCADA DATAVS. PMUDATA
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Source: DOE, Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs, 2013.

PMU adoption has accelerated since the ARRA jump-started PMU commercializationand
development of updated technical standardsand conformance testing. The electricindustryis
currentlyin the second round of technical standard updates through IEEE; and several utilities
are now installing PMUs as part of regular infrastructure build-outs (rather than as special
projects). As a result, synchrophasortechnologyis gradually shifting from a research and off-
lineanalysistool to one that actively supports real-time operations, enabling such capabilities
as real-time oscillation monitoringand management, linear state estimation, and automated
power plant model validation. In 2009, there were fewer than 200 PMUs in the U.S.
transmission system, used primarily for research. By 2017, there were more than 2,500
networked synchrophasors, providing visibility across nearly 100% of the U.S. transmission
system at varying degrees of resolution.*?

EMS Advancements

Transmission operators have continued to advance smart grid capabilities that utilize the
benefits of IT/OT integration. A good example of this isthe Advanced Control Center (AC?)
commissioned in 2011 by PJM.?° PJM is the regional transmission operator which coordinates
electricity across Pennsylvania, New Jersey, Maryland, and 10 additional states and serves over
65 million people. The AC? employs a shared architecture platform permittingvarious
applications (associated with the EMS, market management system, and settlements system)
to pluginto an enterprise service bus and receive and transmit informationthrough it by
applyingstandardized communication protocols and procedures. Asaresult, it providesa
standardizedintegration platform for applications that differin technology, design or vendor
and can scale to incorporate additional applications and data streams. Forexample, it can
integrate the massive data streams from the increasing number of phasor measurement units
beinginstalled across the PJM territory. It also provides aninformation platform for PJM’s
members through industry-standard messaging architecture and two-way communications.
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2. DISTRIBUTION AUTOMATION

Distributionautomation (DA) refers to the application of digital processes to improve the
effectiveness and efficiency of distribution system operations, oftentimes to automate
operationsthat were formerly performed manually. Thisincludes automation of fault
detection and restoration, equipment health monitoring, and the optimized management of
voltage and reactive power.

Automated Location and Isolation of Faults

Faultlocation, isolation, and service restoration (FLISR) technology can help utilities better
isolate faults and restore power where outages have occurred. FLISR devices include fault
indicators, line monitors, automated feeder switches, and reclosers. When a fault occurs or a
power lineis damaged, these technologies work in tandem to detect and clear temporary
faults, isolate sustained faults, and automatically re-route power around faults (where
possible), often within seconds.

As was observed by several utilities receiving ARRA funds, fully automated switchingand
validationtypically resultedin greater reliabilityimprovements than operator-initiated, remote
switching with manual validation. For example, several utilities that deployed FLISR reported a
55% reduction in the number of customersinterrupted by sustained outagesand a 53%
reduction in the number of minutes that they were out of power duringthose events. In
addition, eighteen utilities that deployed FLISR reported avoiding 197,000 truck rolls, equivalent
to 3.4 million vehicle miles traveled, from 2011 through 2015. Precise faultlocation enables
operators to dispatch repair crews accurately and notify customers of outage status, which
reduces outage length and repair costs, reduces the burden on customers to report outages,
and increases customer satisfaction.?*

Figure 6 shows how automated feeder switching deployed by EPB in Chattanooga restored
power within seconds to half of the customers who experienced an outage duringa June 2012
derecho (windstorm) which had moved rapidly across the eastern part of the country. The
automated switchingtechnology detected the faulted sections of the distribution system and
immediately reconfigured the distribution networkin such a way as to limit the number of
customers experiencingthe outage. InFigure 6, the green line shows the outage curve for
those experiencingthe event, whilethe blue curve provides an estimate of the outage curve if
the technology had not been deployed. EPB estimates thatit avoided $23 million in customer
damagesin thisone stormand was able to completely restore the system 17 hours earlier than
anticipated.”

" Customer damage estimates were calculated using the Interruption Cost Estimate (ICE) Calculator tool, which
applies outage damage costs from numerous utility surveys. See https://icecalculator.com/home.
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FIGURE 6. FASTER RESTORATION TIME AT ELECTRIC POWER BOARD OF CHATTANOOGA
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Equipment Health Monitoring and Failure Prevention

Improved sensingcapabilities enable operators to measure equipment health parameters and
receive real-time alerts for abnormal equipmentconditions. Utilities can better anticipate and
proactively prevent equipment failures, prioritize repairs and maintenance, and plan
preventative maintenance and replacement needs. These technologies and systems also equip
grid operators with new capabilitiesto better dispatch repair crews based on diagnostics data.

For example, Florida Power & Light (FPL) can observe changes in transformer performance
based on shiftsin voltage output detected by smart meters. FPL can now replace transformers
before theyfail and, as a result, has significantly reduced outage times experienced by
customers through a proactive maintenance program.??

Voltage Optimization and Distribution System Efficiency

Several utilities are applyingautomated methods to adjust voltage and reactive power levels
alongtheirdistribution circuits to reduce energy losses and conserve energy consumption,
especially during peak demand periods. Voltage optimizationand conservation voltage
reduction (CVR) processesintegrate the operations of several devices (load tap changers,
voltage regulators and capacitors) and can be performed through a variety of automated
approaches. The energy saved in these operationsistranslated directly into savings for
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customers and a reduction in energy requirements that can lead to deferring capital expenses,
includingfor generation facilities.

The potential energy savings from voltage optimization varies fromcircuit to circuit. However,
case studies show that even a modest voltage reduction of 1-3% can deliver significant energy
and cost savings. Several utilities participatingin ARRA-funded projects realized energy savings
of 2%-4% on affected feeders using conservation voltage reduction methods. Forexample,
Duke Energy used integrated volt/VAR controls with an advanced distribution management
system to achieve a consistent 1%-1.58% voltage reduction on more than 700 circuits across
Ohio.?® Thesereductions saved fuel and lowered customer bills, with no detrimental effects on
service quality. In 2011, Duke estimated the value of its smart grid investments over a 20-year
period at $190.41 million.?* Duke’s continuous voltage reduction strategy—which targeted a
2% voltage reduction—made up the most significant portion of those expected benefits, valued
at $155.57 million over 20 years.

Applied system-wide, such techniques could save hundreds of thousands in yearly energy costs,
particularlywhen targetinglarger and heavily loaded feeders, although the costs of
implementingthe technology need to be measured against potential benefits. Also, integrating
smart invertersinto legacy voltage optimization systems will present a challenge, as utilities
and regulators will need to develop strategies to deploy the advanced functionality of smart
inverters described in IEEE 1547-2018. Nearly 45,000 circuits now have voltage optimization, or
about 22% of all U.S. distribution circuits (as of 2016).%°

DA Investment and Deployment Trends

Smart grid investments in the coming years will shift more heavily to distribution system
intelligence. Many utilities pursuingdistribution automation started with small-scale
deployments, allowingthem to resolve technical and systems integration issues, and assess the
potential benefits and savings for utilities and customers alike. As utilities begin to scale up
deployment plans, distribution-level smart grid investments are predicted to increase
significantlyin the coming years, according to Newton-Evans (Figure 7). More than half of
spending will go to smart field devices and communications networks, while an increasing
percentage will be spent on control equipment and controlcenter and substation-based
software and platforms.
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FIGURE 7. ESTIMATED HISTORICAND PROJECTED U.S. INVESTMENTS IN DISTRIBUTION AUTOMATION
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representing 10%-30% of U.S. or North American markets, either in terms of customers served, number of substations, or revenues.
Represents sum of all DA categories, mid-range estimate.

3. SMART METERSAND ADVANCED METERING INFRASTRUCTURE (AMI)

AMl is an integrated system of smart meters, communications networks, and data management
systems that provide a two-way digital link between utilities and customers. Nearly half of U.S.
customers now have smart meters. For most utilities, smart meters collect data at regular
intervals (typically 15 minutes) and deliverit to a local data aggregator in the communications
network where it is finally backhauled to an operations center. Because of the vast amount of
data, utilities typically backhaul the data three times per day, and use it for customer billing,
load forecasting, and system forensics. Thisinformationcan also be shared with customers to
help them better monitor and manage their electricity consumption.

AMI provides significant operational benefits, which translate to utility cost savings and
convenience to customers. AMI can:

e Significantly reduce operating costs by remotely reading meters,
connecting/disconnecting service, and identifying outages—all previously manual
functions.

e Generate more accurate bills faster and enable utilities to provide customers digital
access to their usage information. About 26% of U.S. customers now have daily digital
access to their usage data.?®

e Detect meter tamperingand electricity theft to enhance revenue collection.
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e Send “last-gasp” alerts when service is disrupted, enabling utilities to isolate outages
faster and dispatch repair crews more precisely. This capabilityis most valuable when
smart meter dataisintegrated with outage management systems and restoration
operations.

e Enable utilitiesto send time-based price signals to customers and incentivize demand
reduction during peak periods. (See Dynamic Pricing and Demand Response on page
33).

e Supportvoltage management activities when smart meters are used as sensors.

Florida Power & Light has deployed a mobile application called the Restoration Spatial View
(RSV) tool for use on tablets and smartphones to assist the utility’s field crews in power
restoration efforts. The applicationcombines AMIinformation and data from a variety of
sources to provide GPS-assisted street views and driving directions, weather data and storm
tracking, maps showingreal-time information on fault locations and smart meter outage
activity, customer usage and voltage history, and restoration confirmation. The RSV tool,
serving as an information platform, has greatly aided field crews in restoration operations; the
restoration confirmation function ensures there are no embedded outages priorto leavinga
site.

FIGURE 8. VIEW OF A SCREEN IMAGE FROM FPL’S RESTORATION SPATIAL VIEW TOOL
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AMI Investment and Deployment Trends

From 2007 to 2016, the number of advanced meters has grown ten-fold. About 70.8 million
meters out of a total of 151.3 million meters were smart meters as of 2016, representingabout
47% of U.S. electricity customers (Figure 9). Bloombergestimates that numberhasrisento 51%
by the start of 2018.%” Thisis a significant increase compared to 14% of customers with smart
meters in 2010 and only 2% in 2007.%®

Recovery Act investments contributed to this sharp rise, as cost-shared investments deployed
1/3 of all smart meters added between 2010-2015 (16 million meters). Individual statesand
utilities often have vastly different rates of smart grid deployment, as the business case varies
widely. Thelargest number of smart meters were installed in Californiaand Texas, states with
deliberate AMI polices. These policies created less risk for utilities to recover costs and reduced
the administrative burdenfor processing rate cases before AMI benefits were widely proven.

FIGURE 9. PERCENT OF U.S. CUSTOMERS WITH SMART METERS
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Source: EIA, “Electric power sales, revenue, and energy efficiency: Form EIA-861,” 2016 data.

Differences in AMI deployment rates are often driven by state legislation or utility regulation, as some states require
that regulators approve utilities’ cost recovery mechanisms.
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AMl investment rates are expected to slow in the years ahead (see Figure 10). Half of all
meters are now smart meters, and another 25% are meters with automated meterreading
(AMR) functionality—asmart meter precursor thatimproves the efficiency of meter reading.*
Because the operationaland maintenance savings from automated metering make up about
65%-80% of expected AMI benefits,3° utilities with AMR find it difficult to justify AMI upgrades
ahead of expected replacement periods.

Operations and maintenance (O&M) savings derived from AMI deployments are highest for
utilities with low customer densities over large geographic regions, or with significant weather-
related outages. For utilities with small-scale metering(e.g., under 750,000 meters), the cost of
back-office software systems can sometimes outweigh the benefits. Aside from O&M savings,
the ability of AMI to provide timely customer use datais most attractive to utilities and states
with strongsupport fortime-of-use rates or where demand response has a high value.

Goingforward, investment will likely center on more holisticgrid modernizationinvestments,
like grid sensingand multi-purpose communicationsthroughout the distribution grid, rather
than point solutions like AMI. Stronger business cases are emerging that are not centered
around automated billing. Future AMI systems will apply smart meters that act as grid sensors,
distributed computing platforms, and control pointsfor DER.>! Next-generation smart meters
are now becoming commercially available; they will have computing capabilitiesand permit
distributed decision-making.

FIGURE 10. GROWTH N U.S. CUSTOMERS WITH ADVANCED METERING INFRASTRUCTURE (AMI), 2007-
2030
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Source: Actuals through 2016 from EIA, “Electric power sales, revenue, and energy efficiency: Form EIA-861,” 2016
data; projections from BNEF, provided directly to DOE.
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4. CUSTOMERAUTOMATION AND ENERGY MANAGEMENT SYSTEMS

With rising AMI deployments, more than a quarter of U.S. customers now have daily access to
their digital energy usage information through their energy providers using mobile apps and
web interfaces. Customers can use thisinformation to make smarter energy decisions over
time, but a real sea change is coming from advanced control technologies that allow customers
to automate changesto their energy use in response to price signals or other inputs.

The set-it-and-forget-it nature of smart thermostats makes it easier for customers to participate
in demand response and dynamicpricing. Smart home devices, like NEST, Amazon’s Echo, and
Google’sHome, go even further, allowing users to connect and automate a growing number of
technologies (such as lights, thermostats, security cameras, and door locks) with a single device.

NEST, for example, links multiple smart home devices on a network, and can activate lights
when security cameras detect motion, orturn down lights to save energy when the houseis
empty. NEST also connects to the utility’s metering system through Wi-Fi to respond to time-
of-use signals and adjust electric-based heatingand cooling systems during peak periods.

Amazon’s Echo uses voice recognition to check the news, play music, search the web, or
purchase services through connected businesses. Capabilities can be expanded by downloading
“skills” in the Alexa app from other businesses—including some energy utilities. TXU Energy, a
Texas-based energy provider, launched two new Alexa skillsin November 2017: one that allows
customers to see and manage their account, and one that allows them to control their TXU
thermostats with Alexa, rather than adjusting the device manually.??

Of about 117 million U.S. homesin 2016, about 17 million had some type of smart home
device. By 2020, 40 million smart thermostats are expected in U.S. homes with 50 million smart
light bulbs, and 12 million smart water leak detectors.® Sales of connected home technologies
grew almost 1500% from 2012 to 2017, 3* and explosive growth is slated to continue as
competitionincreases and vendors expand how devices interact with other businesses and
services (see Figure 11 and Figure 12).
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FIGURE 11. CONNECTED HOME TECHNOLOGY SALES, MILLIONS
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Source: Statista, “Connected home technologies sales in the United States from 2012 to 2017,” 2018.

FIGURE 12. GROWTH IN HOME ENERGY MANAGEMENT SYSTEM REVENUE

20,000M
Revenue expected to reach $17.7B in 2025 u
.
”’
15,000M >
”,
e
,
’
-’
L7
10,000M ’
-,
’
’
’
-’
-
L’
5,000M e
> >

s 2 2 © o -7

< o N~ o o P4

< 2] o ™ < s

& ©“ s & 123

o [ [ [ ]
2011 2012 2013 2014 2015 2025

Source: Advanced Energy Now, 2017 Market Report, prepared by Navigant Research, 2017.

Though connected home technologies are increasingin availability and popularity, none are yet
fully “plug and play” to easily enable energy savings or load shifting. Integratingdevices such as
Amazon Echo and Google Home into home energy systems can be cumbersome and often
requires the purchase of additional appliances to fully realize potential cost savings.
Nevertheless, the technology maturity (e.g., userinterface, controls) is beginningto come
together with declining costs to enable future widespread use.
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Business owners are also beginningto adopt buildingenergy management systems that allow
more precise control and automatic settings to drive down energy use and costs. Since 2011,
the market for building energy management systems has grown from $737 million to more than
$1 billion, and is expected to grow faster—more than ten-fold—in the next decade (see Figure
13). These systems employ control technologies to manage appliances, HVAC, and lighting
systems, automatically turningthem on and off to optimize efficiency or respond to load
conditions or pricing forecasts.

FIGURE 13. GROWTH IN BUILDING ENERGY MANAGEMENT SYSTEM REVENUE

Revenue expected to reach $10.8B in 2024

$1,026M
$1,066M

$737M
$826M
$936M

Source: Advanced Energy Now, 2017 Market Report, prepared by Navigant Research, 2017.

Buildingand home energy management capabilities must be designed to seamlessly coordinate
with grid management systems to be effective. Integration will require utilities to foster true
bi-directional communication networks that can send and receive price signals, commands, and
otherdatain standard, interoperable formats. Customer privacyand data protectionisa
growing consideration, as both smart meters and customer-based technologies allow utilities
and third-party service providers to collect and analyze vast amounts of energy usage data.

5. DYNAMIC PRICING AND DEMAND RESPONSE

The combination of AMI and smart customer devices enables customers to effortlessly change
their energy usein responseto dynamicrates. Time-based rates, or dynamic pricing, include a
variety of options for utilitiesto charge higher rates during peak hours or critical events, and
lower rates during off-peak hours (see Figure 14). While the electricity industry has been
exploringtime-based rate optionsfor decades, smart grid technologies make it possible to use
dynamicpricing to incentivize significant shifts in customer load during peak periods.

Customers can use smart devices to automatically reduce their energy use during peak hours to
save money. Direct load control devices—installedin energy-intensive appliances like air
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conditioners and water heaters—also allow utilities to temporarily turn appliances off during
peak periods, oftenin return for bill credits.

Only 5% of U.S. customers participate in dynamic pricingtoday, as the enablingtechnologies
are being put into place and utilities test program designs.3> Recent studies show significant
promise. Twenty-six utilitieswho tested various rate programs with more than 400,000
customers under their SGIG projects found that customers reduced their peak demand by up to
23.5%.3° Peak demand reductions can help utilities defer capital investments in peaking power
plants.

FIGURE 14 - ILLUSTRATION OF TIME-BASED RATE DESIGNS
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Source: DOE, Customer Acceptance, Retention, and Response, 2016.

In a set of rigorously controlled variable pricing studies undertakenthrough ARRA efforts with
10 utilities, participants foundthat customers that applied control technologies, such as
programmable communicatingthermostats (PCTs), reduced peak demand to a greater extent
than those customers that just received information from utilities through in-home displays.?’
Such thermostats provide customers the additional convenience of setting their comfort
preferences and then lettingtheir heatingand cooling systems function automatically to signals
provided by the utility. Although the results were variable, some utilities have continuedto
expand their time-varyingrate programs based on the success of the pilot projects conducted
under DOE’s SGIG program:

e |n 2015, California’s legislature directed the state’s investor-owned utilities to adopt and
implement time-of-use rates as a default,*® after examining their potential for beneficial
load shifts. Encouragingresults fromthe Sacramento Municipal Utility District’s (SMUD)
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Consumer Behavior Study®® under DOE SGIG helped justify this decision. SMUD
observed an average peak demand reduction of 26% for those customers on a critical
peak pricing program (without the use of a PCT).

e Oklahoma Gas and Electric’s Smart Study TOGETHER project evaluated variousenabling
technologies with time-based rate programs, and its impacts on energy consumption
and peak demand. The pilot program used a multi-tiered rate structure (low, standard,
high, and critical). Residential customers averaged annual savings of $191.78 and
commercial customers averaged $570.02 annual savings.*® Based on study results,
OG&E expanded the use of time-based rates to nearly 20% of its customers, ** which are
achieving 147 MW of peakdemand reduction and helped deferinvestmentinto two 165
MW plants originally planned for construction in 2015/16.%2

FIGURE 15. PERCENT OF U.S. CUSTOMERS WITH DYNAMIC PRICING BY STATE, 2016
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Source: EIA, “Electric power sales, revenue, and energy efficiency: Form EIA-861,” 2016 data; includes customers
participatingin one of the following pricing programs: Real time, Time of Use, Variable Peak, Critical Peak, Critical
Rebate Pricing.
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V. Drivers of Grid Transformation

The electric grid has faced technological and institutional challenges throughout its history;
however, we are currently facing a dramaticstructural transformation. Three tightly
interconnected forces are collectively driving grid transformation, imposing requirements for
advanced functional capabilities, and ultimately shaping how individual utilities and states
adoptand deploy smart grid technologies:

1. Federal, state,and local policies favoringthe adoption of renewables and DERs and for
enabling greater customer choice.

2. Advancementsthataredrivingdown the costs of information management, computing,
and communication technologies, as well as for renewables and DERs, and offering new
capabilitiesto utilities and customers, as a result.

3. The emergence of new participants, such as utility customers as prosumers,® energy
service providers, and technology firms, in the management and generation of
electricity and as providers of grid services.

FIGURE 16. FORCES INFLUENCING GRID MODERNIZATION

Federal and State Policies
* Tax Credits
* Renewable Portfolio Standards
* Net Energy Metering Policies
* Energy Storage and DER Markets and Mandates
* Community Choice Aggregation
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Utilities will continue to apply advancesin information management, computingand
communication technologies to improve grid reliability, resilience and efficiency. However, the
advent of DERs, most notably PV over the past few years, introduces challenges (e.g., the bi-
directional flow of power) the electric grid was never designed to accommodate. Theincrease
in the uptake and mixture of DERs, combined with the fact that entities other than utilities will
own them, introduces considerablevariability and uncertainty in the supply and consumption
of electricity over the broadest range of timescales (sub-seconds to years). Thisincreased level

° A customer that both consumes and produces electricity, enabled by the increased proliferation of home
technology devices and distributed energy resources.
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of complexity will require significant advances in smart grid systems and fundamentally change
the way we conduct grid planningand operations, as well as incorporate market structures.

DERs are energy resources on the distribution grid that can generate electricity, store energy,
or reduce or impact customer load. The National Association of Regulatory Utility
Commissioners (NARUC) defines a DER as “a resource sited close to customers that can provide
all or some of theirimmediate electric and power needs and can also be used by the system to
eitherreduce demand (such as energy efficiency) or provide supply to satisfy the energy,
capacity, or ancillary service needs of the distribution grid. The resources, if providing
electricity or thermal energy, are small in scale, connected to the distribution system, and close
to load. Examples of different types of DER include solar photovoltaic (PV), wind, combined
heatand power (CHP), energy storage, demand response (DR), electric vehicles (EVs),
microgrids, and energy efficiency (EE).”*?

Figure 17 describes the various types of DERs and their characteristics with respect to how they
interact with the grid (i.e., whether they consume, store, or deliver energy). Energy storage
devices can interactin all of these ways.

FIGURE 17: DER TYPES, OWNERS, AND GRID CHARACTERISTICS

DER Type Primary Owner Characteristics

Photovoltaic (PV) Utility, merchant, or Provides electricity to customers, microgrids, and/or
System customer utility grids; power output depends on the intensity of
solar irradiation

Energy storage Utility, merchant, or | Consumes, stores and delivers electricity to customers,

system customer (aggregator | microgrids, and/or utility grids; often used to enhance
may be involved) system flexibility

Combined-heat- Utility, merchant or Provides district heating (steam) and electricity to

and-power customer customers, microgrids and/or utilities

systems

Energy efficiency Customer Use of energy efficient technology to reduce electricity
(sometimes consumption; often promoted in utility programs

aggregator involved)

Demand response | Customer (often Often associated with utility programs where
aggregator involved) | customers are compensated for reducing demand
(load) during peak periods of electricity usage

Variable rates Utility/customer Utilities may impose variable rates to customers to
incentivize behavior that reduces overall energy usage
or demand during peak periods
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DER Type Primary Owner Characteristics
Electric vehicles Customer Consumes electricity and methods for delivering
electricity back to the grid are being investigated
Building energy Customer Optimizes energy use for the building owner
management
system
Microgrid Utility, customer, or | A grid system providing electricity services to a set of

merchant

customers or buildings (e.g., a university campus);
optimizes energy use within its domain, provides
backup power, and offers energy or other services (e.g.,
frequency regulation) back to the utility grid

The mannerin which they operate will depend upon their performance capabilities, as well as
the operational objectives of their particular owners. Asshownin Figure 18, the emergence of
DERs and improved networking capabilitiesare pushingthe evolution of the grid from one
where centralized poweris delivered in one direction to customers to a more integrated and
distributed structure with the coordination of power flow, information, and services conducted
across the domains of grid operators, customers, and service providers.

FIGURE 18. GRID TRANSFORMATION INTRODUCES COMPLEX RESOURCES

Traditional Grid

Source: IEEE, Electric Power Grid Modernization Trends, Challenges, and Opportunities, 2017.

The transformation to a more distributed future is not happening consistently across the
country, but rather is occurring in a patchwork manner driven by favorable policies, patterns
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of customer adoption, and business practices influenced by increasingly affordable and mature
technologies. Where these forces come together, the rate of technology uptake can be rapid
and even outpace the ability of regulators and utilitiesto manage a smooth integration. Asa
result, holisticstrategies for the deployment of advanced technologies are needed to
effectively address theincreased level of complexity. Smart grid technologies that offer
increased visibility, more precise control, automation, and the computing power for fast data
processingand decision-making will all be required to manage a grid with a high level of
renewable and distributed resources.

Recent policies and deployment actions show the range of grid modernizationactivities at the
state level, from technology deployment, to utility business model and rate forum, and DER
integration and valuation strategies. In 2017, 39 states plus the District of Columbia (DC) took a
total of 288 policy and deployment actions related to grid modernization (see Figure 19).%*

FIGURE 19. TOP GRID MODERNIZATION ACTIONS OF 2017
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Source: NC Clean Energy Technology Center, 50 States of Grid Modernization, 2018. Chart refers to total actions,
not total states for each action.
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The remainder of this chapter presents the technology, policy, and participant forces that are
driving grid transformation. Followingthis chapter, the remainder of thereport discusses the
issues that this grid transformation presents (Chapter Vl) and approaches beingundertaken to
address them moving forward (Chapter VII).

A. Evolving Energy Resource Mix: Gas and Renewable Energy
Lead Capacity Additions

The last decade has seen a significant shiftin the U.S. energy resource mix, with traditional fuel
generation retirements that are largely replaced by natural gas, wind, and solar capacity
additions(see Figure 20).

Improved natural gas extraction techniques have led to larger domesticgas resources and
lower natural gas prices. Natural gas-fired power plants are also more efficient than other fossil
fuels and offer more flexibility, able to ramp up in minutes during peak periods and to provide
essential back up tointermittent wind and solar resources. Natural gas capacity additions
continue to out-pace projections; on-peak natural-gas-fired capacity hasincreased 10% (447
GW) from 2009 levels (401 GW).* Between 2011 and 2015, 51 gigawatts (GW) of coal-fired
capacityretired or converted to another energy source, and an additional 33 GW of retirements
are planned between 2017 and 2027.%¢

Meanwhile, declininginstallation costs, favorable policies and incentives, and corporate and
publicinterest have triggered a rapid uptickin renewable energy deployments. U.S.renewable
energy capacity (including hydropower and nuclear) has grown 33% since 2010, and now
accounts for about 30% of total U.S. generation. Wind and solar together account forabout

11% of U.S. generation (see Figure 21).%’
FIGURE 20. CUMULATIVE NET CAPACITY GAIN FIGURE 21. TOTAL ENERGY CAPACITY BY FUEL
(GW), 2009 - 2016 TYPE (MW), 2016

ol Natural Gas 447K (41%)

Gas Coal 267K (25%)

Sofar Hydro 103K (10%)

Nuclear 100K (9%)
Wind 81K (8%)

Hydroelectric
— Nuclear Petroleum 34K (7%)
Solar 32K (3%)

Petroleum Biomass | 14K (1%)

Other o SOk
5K (0%)
Renewables 70%

Coal Other Gases | 2K (0%)

Source: EIA, “Electric power sales, revenue, and energy ~ Source: EIA, “2016 Electric Power Annual, Table 4.2A
efficiency: Form EIA-861,” 2016 data. and 4.2B.”
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Resources such as wind and solar—with production levels dependent on weather patterns—
can introduce considerable variability in generation profiles, while customer-based generation
can make demand curves more unpredictable. The result of this shift in resources is a complex
mix of characteristics and constraints that affect everything from long-term planning to day-to-
day operationsand minute-by-minute control and coordination.

B. Rapid Rise of Utility-Scale and Distributed Solar

In under 10 years, solar photovoltaic (PV) systems have seen a near meteoric capacity growth of
more than 2,900% (from 1,102 MW in 2010 to 32,954 MW in 2016). This swift rise was driven
by maturingtechnologies, fallinginstallation costs, favorable policies and incentives, and a
growing demand—from individual customersto major corporations—for cleaner energy
technologies and on-site generation. Solar PV installations range from large, utility-scale
(greater than 1 MW) projects to smaller, distributed projects (less than 1 MW), which often
consist of residential, commercial, and industrial rooftop projects.

1. SOLAR TECHNOLOGY MATURITY AND AFFORDABILITY

The average solar installation cost—across utility and customer installations—fell 68% since
2010. Decreasinginstallation costs are a result of increased module efficiency, low-cost
imported panels, and reduced profit marginsin an increasingly competitive space. Module
efficiency increased from 13.8% in 2010 to 17.5% in 2016; module power capacity increased
27.5% from 225 W in 2010 to 287 W in 2016.

Cost decreases and capacity additions were most pronounced for larger-scale installations
(see Figure 23). The 80% cost reduction for utility-scale projects was especially pronounced, as
costs fell from $4.78/W in 2010 to $0.97/W in 2017.*® With the sharpest price decrease, utility-
scale photovoltaicsolar has also grown most significantly—from 393 MW in 2010 to over
20,192 MW in 2016—and more than quadrupled between 2013-2016 alone. About 50% of
grid-scale capacity is owned and

operated byindependentpower  FIGURE 22. SOLAR CAPACITY BY SECTOR (MW), 2016
producers (see Figure 22).

Independent Power Producers Residential Commercial
18483 7.524 4324

While annual solarinstallations
may drop slightlyin 2017 and
2018 due to policy uncertainty,
SEIA expects that cost
improvements, policy incentives,
and corporate demand will drive
annual capacity additions near 16
gigawatts (GW) by 2022. If solar

adoptioncontinues apace, solar iy —
technologies will account for 5%
of U.S. generation by 2022, up

from 2% today.49 SDourc;z.:| EIA, 2016 Electric Power Annual, Table 4.2B and 2016 EIA-861 Survey
ata Files.
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FIGURE 23. SOLAR CAPACITY AND COSTDATA
TOTAL SOLAR CAPACITY (32,954 MW), 2016
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Solar’s biggest grid impact may come from smaller-scale installations, which introduce
thousands or millions of new distribution-level endpoints that introduce two-way power flows
and disrupt traditional energy market designs, as some customers can now buy and produce
power. Distributedsolar capacityalone grew by more than 687% (from 1,622 MW in 2010 to
12,765 MW in 2016),°° making it the most rapidly expanding technology market.

Solar PV is the fastest growing type of small-scale distributed generation (DG). Figure 24 shows
distributed generation capacity by fuel type, including both renewable resources and fossil-fuel-
powered generators, which include combined heat and power at commercial and industrial
facilities. Slightlyless than half of distributed generators are fossil-fueled generators.”

While these small-scale systems often do not contribute significantly to capacity, they have
introduced hundreds of thousands of new generation points into the distribution grid, which
operators must safely integrate and manage. The number of individualdistributed generators
grew by 818%, from fewer than 200,000 unitsin 2010 to more than 1.5 millionin 2016. This
added complexity challenges current models for grid planning, operations, and markets.

FIGURE 24. DISTRIBUTED GENERATION CAPACITY DATA (ALL FUEL SOURCES)

GROWTH IN DISTRIBUTED GENERATION GENERATORS  pjSTRIBUTED GENERATION CAPACITY BY FUEL TYPE
AND CAPACITY, 2010-2016

(MW), 2016
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Other Fossil 2,380 (5%)

Coal 2,227 (5%)
Other o
Renewables 1,501 (3%)

Petroleum || 540 (1%)
Generators Hydro | 513 (1%)

172,435 Wind | 302 (1%)

. Capacity Generators Fossil Renewables

Sources: EIA, “Form EIA-861,” 2016 data; EIA, “Form EIA-860,” 2016 data.

P Figure 24 considers distributed generation to include the following types, as reported to EIA by power industry
entities on Forms 860 and 861: net-metered generators (Form 861), non-net-metered generators (less than 1 MW;
Form 861); and generators directly serving commercial or industrial facilities, including combined heat and power
(CHP) facilities (Form 860).
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2. POLICIES AND INCENTIVES DRIVING SOLAR UPTAKE

Policies and incentives at the federal, state, and local levels are favoring the adoption of
renewable energy generation at the bulkand distribution system levels. Theseinclude
renewable portfolio standards, energy efficiency targets, incentives and tax credits for
renewable technologies, net energy meteringrules, and community solar policies.

Renewable portfolio standards (RPS) are state-level regulations that mandate a target
percentage of electricity production must come from renewable resources by a certain date.
State legislatures typically establishthese standards, and public utility commissions (PUCs)
generally translatetheminto rules that govern what percentage of power electricity utilities
must purchase from renewable sources.>!

As of February 2017, 29 statesand DC have a renewable portfolio standard, while another 8
states have voluntary renewable portfolio goals (see Figure 25). RPS vary greatly by state, and
many states have more modest near-term targets over the next decade and stretch targets in
the decades beyond. Hawaii, for example, recently mandated 100% renewables by 2045, with
interim targets of 30% by 2020 and 70% by 2040.

FIGURE 25. STATE-LEVEL RPS AND NEM RULES AND INSTALLED SOLAR PV CAPACITY (2016)
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In addition, 26 U.S. states have established energy efficiency resource standards (EERS), which
are binding, long-term (typically 3+ year) targets for utilities or program administratorsto
improve energy efficiency, and may be coupled with a state’s RPS. Utilities can meet targets
through more efficient generation as well as energy-efficiency and demand-side management
programs, such as time-based rates and demand response.>?
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State and federal renewable energy tax credits offer residential, commercial, and industrial
customers attractive capital incentives to develop renewable energy projects. The federal
Business Energy Investment Tax Credit (ITC) provides a 30% tax credit for solar, fuel cell, and
some wind installations. The creditdropsto 26% in 2020, 22% in 2021, and sunsets at 10% in
2022. TheRenewable Electricity Production Tax Credit (PTC) offers a 10-year, per-kWh credit
for wind and other renewable systems; the PTC expires December 31, 2019, for wind
technologies, and expired in 2017 for all other technologies.

Net energy metering (NEM) rules define how customers are credited for the electricity they
generate and may require utilities to buy any excess electricity customers add back to the grid.
In several states, these credits helped to tip the economicscale in favor of onsite solar,
particularly as customer installation costs fell quickly over the last five years. However, several
states have revised, eliminated, or are reviewing their NEM rules as DER adoption rises to avoid
cross-subsidization.

Most states have traditionally compensated customers at the full retail rate—the same rate
they pay the utility per kWh of electricity—resultingin very low or even zeroed-out bills for
some customers. As a result, some argue that customers with PV may not fairly pay for fixed
infrastructure costs, leaving non-PV customers to take on a larger share of those costs. Others
argue that distributed PV increases societal and system benefits at an equal or higher rate than
the NEM credits. °®> Many states are reviewing NEM rules, and in several states, PUCs have
removed or revised NEM rules so that they credit customers below the retail rate and/or create
a minimum monthly service charge for PV customers.

As of 2017, 38 states plus DC enforce mandatory NEM rules, down from 43 states plus DC in
2010 (see Figure 25).%** More than 1.4 million U.S. customers now participate in net energy
metering—an almost five-fold increase from 2010—with installations totaling more than 13.5
MW in generating capacity nationwide.>>

Communities and cities areincreasingly seekingenergy optionsto address economic
development and environmentaland resiliency objectives. In certain states, individualscan
form a non-profit group, known as a Community Choice Aggregator, to secure renewable
electricity contracts on behalf of a community. Legislated in seven states’, community choice
aggregation (CCA) is a powerful tool to drive growth in renewable energy; aggregators can
procure clean power from the open market and/or partner with community solar subscriber
organizations. In 2013, CCAs procured over 9 million MWh of renewable generation for
approximately 2.4 million customers.>®

The community solar model is another method of leveraging multiple customer accounts for
energy procurement. Community solar policiesare drivingdistributed PV adoption by

9 Six states (Utah, Arizona, Georgia, Indiana, Maine, and Hawaii) no longer enforce mandatory NEM rules; one
state (South Carolina) has added mandatory NEM rules since 2010.

"Massachusetts, New York, Ohio, California, New Jersey, Rhode Island, and Illinois passed CCA laws in the late
1990s and early 2000s.
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providing solaraccess to a large pool of customers not suitable for onsite PV use. Acommunity
solar projectis a shared solar PV array. Participants either payfor a share of the project or
subscribe to a portion of its electricity output, which flows directly into the distribution grid. In
exchange, the participant’s share of the electricity generated is compensated, typically through
a credit to their electricity bill, much like NEM. Utilities, businesses, local governments, and
community groups can host community solar projects anywhere from publicbuildings to
private land.

A recent study found that almost half of all U.S. households are currently unableto hosta
rooftop solar system.>’ By reaching those customers, it is estimated that community solar
could compose 32% to 49% of the distributed solar market by 2020, while attractingup to
$16.3 billion ininvestment.>® Annual community solarinstallationshave increased 410% since

2010, with present total installed capacity close to 800 MW.>°

Policies vary by state, but most enable bill crediting through virtual net metering, aninnovative
policy that allows participantsto deduct a credit from their own electricity bill based on the
electricity generated by their portion of the community solararray (see Figure 26). The ability
to develop shared solar projects may be inhibited or prohibited if the state regulations do not
allow for virtual net metering.

FIGURE 26 - STATES WITH COMMUNITY SOLAR PROGRAMS AND POLICIES

Colorado Minnesota Vermont
VNM credits at full VNM credits at full VNM credits at full
retail rate. Maximum retail rate. Minimum 5 retail rate. Maximum
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/ N o
o oo
’ .

Maryland
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Source: Capacity —Community Solar Hub, “Community Solar Project Map;” Carey et al. Community solar: Share the
sun rooflessly. 2017. Policy —50 States of Solar Report, October 2017. Program details are examples, not
comprehensive.

Some states, including California, Delaware, Minnesota, Maine, Massachusetts, New
Hampshire, and Vermont, have specifically allowed for virtual net meteringthrough
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legislation.®® Other state policies may define the size of projects, along with how many and
who can participate.

C. Energy Storage Technologies in the DER Mix

Energy storage technologies can consume, store, and deliver power, providinga flexible
resource unlike other classes of DER technologies. They can provide emergency back-up
power, frequency response, and generation capacity, and help balance highly variable
electricity supplyand demand. Forthese reasons, storage haslong been an attractive resource
to support grid operations, but high cost has been a severe limiting factor until recent years.
Lithium-ion batteries have dominated new energy storage projects since 2011 because of
rapidly decliningcosts. Othertypes of energy storage technologies, such as flow batteries, are
also becoming more economically feasible and findingcommercial applicability.

Due largely to rapidly declining battery costs and state incentives, utilitiesinterconnected about
207 MW of grid-tied battery storage in 2016 across 829 new installations. Residential
deployments accounted forabout 4.5 MW; non-residential accounted for about 54 MW; and
utility-scale accounted forabout 151 MW of these additions. Totalinstalled battery storage
nationwide is now 541 MW (as of December 31, 2016).°*

While costs are still relatively high, the business case for storageis stronger where it can be
used for multiple applications. With risingsolar deployments, particularlyin the distribution
grid, battery storage technologies are even more attractive for their ability to smooth out
generation variability by storing electricity during times of overgeneration and dispatchingit
when needed for grid support. Inaddition, battery storage technologieshave the ability to
ramp up quickly to respond to frequency regulation needs for short-duration events.

Energy storage mandates or incentives are relatively new, and aim at drivingadoption as costs
rapidly decrease. Massachusetts and Oregon have energy storage mandates, while at least five
other states have energy storage incentives orinvestment programs (see Figure 27). California
leads the nation with an aggressive mandate requiring utilities toadd 1.3 GW by 2019, as well
as a self-generation incentive program which provides more than $420 million through 2019 to
support developmentof residential storage projects. Some solar customersin states like
Arizona, Nevada, and Hawaii that no longer receive full retail rate for excess generation are
turningto battery storage to better utilize their solar systems.

Wholesale market rules can also drive utility storage deployments. Californiaand PJM are
among the organized markets that facilitate storage participation through energy, ancillary, and
capacity market participation models. Roughly three-quarters of non-hydro utility deployments
to dateare concentrated in theseregions. InFebruary 2018, FERC issued Order 841 that
proposed to remove barriers that prevent electric storage resources from participatingin
organized wholesale electricity markets.
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FIGURE 27. ENERGY STORAGE CAPACITY AND INSTALLATIONS
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Source: Cumulative storage capacity and installs, mandates, and incentives —Chew et al., 2017 Utility Energy
Storage Market Snapshot, 2017. State-level capacity —Frith et al., Energy Storage Market Outlook, 2018. Historical
and Projected Energy Storage Capacity — GTM, Energy Storage Monitor, 2017.

Please note the discrepancy between the storage map, historical and projected capacity, and market segment
breakdown. The map is sourced from a 2018 Bloomberg Report and provides the most up-to-date storage
capacities; the market breakdown is sourced from a 2017 SEPA report; the historical and projected energy is sourced
from GTM. The discrepancies can be attributed to data collection methodology andyears analyzed. Nevertheless,
the graphs bring attention to key storage markets, scale of projected growth, and market demarcation.
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D. Rising Electric Vehicle Adoption Impacts Distribution Load

Improved battery technologies also continue to drive EV manufacturing costs lower,
encouraging more auto manufacturers to enter the EV market and develop competitive
models. Since 2010, prices for lithium-ion battery packs have decreased 73% while their energy
density has doubled—allowing EVs to travel further on a single charge.®? Large-scale
manufacturing of EV batteries hasimproved economies of scale and driven costs down, with
some manufacturers striving to bring prices well below DOE’s target price of $125 per kWh.®?

By 2016, there were nearly 700,000 EVs on U.S. roads, compared to 30,000 in 2011, a growth
rate of 87%.%* Nearly 10 million EVs are expected on U.S. roads by 2025.%° Increasing
competitiveness has improved customer choice and increased sales. In 2011, there were only
four reported models of PEVs available, with annual sales below 18,000. By 2016, the number
of models more than quadrupled, with annual sales at nearly 150,000 units across more than 20
models. °°

Federal and state incentives, gasoline prices, and an increasing number of EV charging stations
have also driven customeradoption. All-electricand plug-in hybrid cars purchased after 2010
are eligible for a federal income tax credit of up to $7,500. State-levelincentives mayinclude
tax credits and rebates; sales and use tax exemptions; reduced license, registration, or title
fees; and non-financial incentives, like use of HOV lanes or special parking permits.

EVs are forecasted to account for more than 35% of the U.S. car fleet by 2050, with battery
electric vehicles (BEVs) accounting for more than 80% of the EV market. Therise in EV
deployment may significantly increase electricity demand during peak charging times,
particularly where concentrations are high (see Figure 28). High adoption of EVs can both
create and alleviate operational challenges. EV owners may be ableto help balance supply
and demand simply by charging during periods of heavy solar generation, which can alleviate
the risk of overgeneration in regions with high solaradoption, like Hawaii and California. ¢ The
California Public Utilities Commission found that by offering time-of-use rates, utilities were
successful in encouraging customers to shift EV charging times to off-peak hours, when
electricity costs were lower.% In the future, EVs may also be able to reduce peak demand by
temporarily discharging power back to the grid—much like energy storage—when the car is
pluggedin butnotin use.
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FIGURE 28. ELECTRIC VEHICLE ADOPTION AND INCENTIVES
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California 6.65 Rebate California 2,500
Hawaii 3.80 Connecticut 3,000
Washington 3.04 Delaware 3,500
Oregon 201 Massachusetts 2,500
Vermont 2.38 New York 2,000
Georgia 2.18 Oregon 750
Arizona 166 Pennsylvania 1,750
Colorado 1.59 Tax Credit  Colorado 5,000
District of Columbia 1.52 Louisana 2,500
Michigan 1.39 Maryland 3,000

Source: PEV Registrations —Ayre, “Top State in US for Electric Vehicle Concentrations — California,” 2017. EV
Incentives —Tesla, “Vehicle Incentives,” 2018.°

* Please note the “Incentives for EV Purchase by State” has caveats regarding income levels and cost of vehicles.
Income level restrictions: California.
Vehicle cost restrictions: Connecticut; Delaware; Maryland; Maryland; New York; Pennsylvania.
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E. Capturing DER Value in Transmission and Distribution
Markets

Wholesale electric markets exist for certain types of DERs, yet are evolving to capture their
potential value. Distributionlevel markets are now beingexplored and emerging through
efforts in New York and other states. Regulators, utilities, and legislatorsare examininghowto
develop market-based structures that appropriately price the services that DERs provide to the
power system, leadingto grid modernization strategies that maximizestheir potential for grid
capacity, flexibility, and operational support. As DERs effectively playinto these markets, grid
plannersand operators will need to effectively coordinate across the transmission-distribution
interface to determine how they are dispatched to ensure reliable grid operations. Capturing
this value requires advanced control capabilities and improved analytical techniques for
forecastingthe rate of DER adoption, assessingthe ability of distribution grids to host DERs, and
determiningthe locational benefitsthat DERs provide.

FIGURE 29. INCREASING MARKET COMPLEXITY

Transmission-Level Market
(Wholesale Generation)

Distribution-Level Market
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Distributed Energy Resources

Wholesale electric market operators began using demand response about 15 years ago;
regulators today are working to make wholesale markets more efficient for integrating new
types of DERs. Transmission market maturity for DERs as non-wires alternatives (NWA), such
as demand response and energy storage, varies dependingon the transmission system
operator.®®

In November 2016, FERC issued a notice of proposed rulemaking (NOPR) that proposed to
remove barriers that prevent electric storage resources and DER aggregators from participating
in organized wholesale electricity markets. Inthe NOPR, FERC preliminarily found that resource
participation in organized wholesale electricmarkets is often governed by market rules that (1)
do notrecognize the physical and operational characteristics of electric storage resources and
(2) limitthe opportunities for DER aggregation to participate. For example, the Midcontinent
Independent System Operator’s (MISO) capacity market limits participationto resources that
can sustain output for four consecutive hours each day, which could exclude energy storage
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resources that do not meet these requirements. The NOPR proposed to allow electric storage
resources to de-rate their capacity to allow them to meet such minimum run times.

In February 2018, after consideringcomments on the NOPR, FERC issued Order 841 to remove
barriers to participation of electric storage resourcesin the RTO and ISO markets." It directs
RTOs and ISOs to develop wholesale market rules that (1) ensure a storage resource is eligible
to provide all the services it is technically capable of providing; (2) ensure storage can be
dispatched and set wholesale clearing prices as both a buyer and a seller; (3) account for the
physical and operational characteristics of electric storage resources through bidding
parameters or other means; (4) establish a minimum participation size for electric storage
resources that does not exceed 100 kW; and (5) ensure that the sale of electric energy from the
RTO and ISO markets to an electric storage resource that the resource then resells back to
those markets is at the wholesale price.

Whilethe 2016 NOPR also proposed revising organized wholesale electric market participation
modelsto include DER aggregation, FERC determined more informationis still needed. It
opened a new rulemaking proceeding RM18-9-000 in February 2018 to continue reviewingthe
DER aggregation proposalsin the November 2016 NOPR.

States are actively examining the development of distribution system level markets for DERs
through analyses that examine the locational value they can provide. Avoidingcostly
transmissionand distribution upgrades presents the largest potential value stream. California,
Hawaii, Minnesota, and New York have begun consideringthe use of DER as an alternative to
long-term costs associated with retail level "wires" investments. An exampleisthe Brooklyn-
Queens projectin New York City where Consolidated Edison (ConEdison)is procuringdemand
response services from local merchants to avoid costly capacity upgrades. ConEdison deferred
$1.2 billion in substationimprovements by investing $200 million on customer-side and non-
traditional utility-side solutions in the Brooklyn-Queens region to shave 52 MW off peak
demand.’® As DERs are examined for their value as non-wires alternatives, distribution system
level markets may expand to include services providing voltage and frequency control and real-
time operational flexibility where grid dynamics are particularly fast.

F. Increasing Customer Participation and Evolving Utility
Business Models

Residential, commercial, and industrial customers are seeking greater control over their energy
supply, and becomingactive market playersin the process. These factors are changing the
traditional roles of distribution utilities, raising questionsabout future business models for grid
investment and cost recovery.

! Electric Storage Participationin Markets Operated by Regional Transmission Organizations and Independent System
Operators, Order No. 841, 162 FERC 9 61,127 (2018).
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Customers Leading Renewable and Distributed Energy Adoption

More than 1 million homeownersnow have solar PV, and 90% of those installations have come
onlinesince 2010.”* Growingsolar adoption hasincreased the number of net metering solar
participantsfrom just under 198,255 in 2011 to almost 1,321,277 in 2017.”> Commercial and
industrial businesses in particular are leading renewable and distributed energy adoptionto
save money, improve their energy independence, and appealto customers. In 2016, 71
Fortune 100 companies had set renewable energy or sustainability targets—up from 60 two
years before.” A total of 22 Fortune 500 companies have embraced 100% green energy goals.
With their high energy use and access to capital, corporations can support financing for new
renewable energy projects of significant size (see Figure 30).

Walmart is a prime example. Since announcinga 100% renewable energy targetin 2005,
Walmart has been installingsolar panels onits stores’ rooftops to save money and promoteits
environmental sustainability policy. The companyisrecognized as a leading corporateinstaller
of solar power; in fact, it now has more solar capacity than 39 individual states and the District
of Columbia.” Inlessthan a decade, the company aims to doubleits current renewable energy
consumption to 50% by 2025.7°
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FIGURE 30. TOP 25 COMPANIES BY SOLAR CAPACITY, 2017
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Source: SEIA, Solar Means Business, 2018 (2017 data).

Customer Participation on Open Markets

Several major corporations have also reached agreements to purchase renewable power
directly from open markets, ratherthan from their distribution utility, while continuingto use
distribution services. These changes are disrupting existingtransmission and distribution
energy and capacity markets, driving regulatory and market evolution to permit new
participation models and effectively value and integrate DERs.

In July 2017, Microsoft reached an agreement with Puget Sound Energy (PSE) allowingthe
company to buyits own power from renewable sources on the open market. The move was
facilitated by a tariff created by PSE in 2016 allowinglarge industrial or commercial customers
to acquire energy from suppliers on the open market, and Microsoft will pay a transition fee of

$23.6 million.
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This followed a trend of casinos that received approval to buy cleaner or cheaper electricity on
the open market. In one of the largest defections from an American utility by a commercial
customer, MGM Resorts International stopped purchasing electricity from Nevada Power in
2016.7® Accountingfor almost 5% of the utility's power sales, MGM agreed to pay an $87
million exit fee that compensates the utility forinvestments made to serve their
disproportionateload. Other Las Vegas casinos have subsequently followed suit—Wynn and
Caesars now purchase electricity directly from Exelon and Tenaska respectively.”’

This trend raises questionsover how utility business models will evolve, allowing utilities to
recover investmentsin distribution delivery and control infrastructure as they shift roles from
an electricity provider to a system coordinator."

Emergent Cost Recovery and Business Model Challenges

Utility cost recovery will become more complex as more and more market players use and
dependon a reliable energy delivery infrastructure, while purchasingless and less energy
directly from the utility. Traditionally, utilities buildand maintain the distribution grid to
achieve high reliability, and recover those costs through service charges builtinto rates. While
transmissionand distribution costs continue torise, electricity load has remained largely flat
within the last decade (see Figure 31), compared to nearly a century of steady load growth.

Thisis due toa combination of factors, includingcommercial and industrial energy efficiency
improvements, manufacturingoutsourcing and efficiencies, and growing onsite customer
generation that decreases utility revenues.’® According to Bloomberg, U.S. investment in
energy efficiency doubled from 2008 to 2015, with spendinglevels reaching $12 billion in
2015.7°

Y Utilities assume the role of coordinating transactions between multiple energy providers and energy consumers.
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FIGURE 31. ELECTRICITY LOAD VS. REVENUE, 1990-2016
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Source: EIA, “Electric power sales, revenue, and energy efficiency: Form EIA-861,” 2016 data. Prior to 2003, sales of
electric power transportation (e.g., city subway systems) were included in “Other Sector,” but were combinedin
certain graphics with “Transportation.” After 2003, the “Other” Sector was reclassified as Commercial Sector sales.
Transportation sector now includes railroads, and roadways, and city subways systems.

Revenue levels are heavilyimpacted by both retail electricity prices and load. Average
electricity prices have remained generally even over the last decade, when accounting for the
rate of inflation. This, combined with flat load growth, has decreased revenues, even as the
cost of buildingand maintainingthe infrastructure continues to rise. Though power generation
costs for most utilities have decreased by 15% since 2006, electricity delivery costs have
increased—in 2016 dollars—from 2.2 cents/kWh to 3.2 cents/kWh, offsetting savings from
power generation.®°
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VI. Grid Impacts and Issues

A steady-state condition, where both electricity generation and customer load were fairly
predictable over time, has historically supported deterministicapproaches for grid planningand
operational engineering. Asdiscussed previously, advancesin several technological areas are
drivingthe deployment of variable renewable generationand a diverse set of distributed
resources at the grid edge. Thisincludes new technologiesand related services for electricity
customers to manage energy and commercial opportunities for service providers and
technology firms. These factors have introduced significant levels of variability and uncertainty
in both generation and load profilesand, with this greater complexity, present needs for new
grid structures and functional capabilities.

The rate of grid transformation depends uponseveral factors that differ accordingto state
jurisdiction and region. When top-down drivers (e.g., federal and state policies) combine with
bottom-up drivers (e.g., the adoption of technology by customers), the rate can be quick and
even outpace the ability of utility and regulatory decision-makers to manage the integration of
distributed assetsinto grid operations. Forexample, Hawaii witnessed a doubling of PV
adoptionoverthe 3-year period from 2013 through 2016 due to the convergence of attractive
prices, the commercial availability of PV systems and the state’s net energy metering policies
(see Figure 32).8*

FIGURE 32. GROWTH IN HECO CUSTOMERS PARTICIPATING IN NET ENERGY METERING
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Source: Hawaii Public Utilities Commission, Docket No. 2017-0226, 2018.

As shown in Figure 33, the high penetrationrate on some distribution feeders in Hawaii caused
voltage levels to rise or drop beyond the permissible range due to the effect of electricity
flowing back into the grid from customer-owned-PV.%? Electric grids were not originally
designed to accommodate such bi-directional flow which can pose thermal, safety and system
protectionissues. As a result, the Hawaii Public Utilities Commission revised its NEMs program
and is working with the Hawaiian Electric Companies (HECO) to undertake a more holistic
approach to DER integration.®?
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FIGURE 33. CUSTOMER-OWNED PV VOLTAGE LEVELS AT HECO
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Image provided courtesy of Hawaiian Electric Companies
Several factors contribute to the complexity of the electric grid, including:

e Thevariabilityand intermittency of renewable generation.

Decreased frequency response capability and decreasing system inertia.

e Changingload patterns and unpredictability.
e System dynamics becoming both faster and more unexpected.
e The needto managea vastly increasingnumber of endpoints.

e Growingcyber attackrisks to the electric grid.

A. Variability and Intermittency of Renewable Generation

As opposed to the dispatchablepowerthatis provided by more traditional sources of
generation, e.g., coal, natural gas, or nuclear power generation, the intermittency of renewable
generation from solarirradiation (e.g., due to ever-changing cloud coverage and the diurnal
cycle) or changing wind speeds cause rapid and highly variable fluctuations in power output.
This variability can be seen, for example, in the hourly changes in electricity production from
wind resources witnessed in the ERCOT interconnectionthroughout2017 (see Figure 34). Such
variability needs to be factored into grid planning processes to assure that the requisite
resources and system flexibility are available at future times to address the uncertaintyin
generation, as well as for effectively balancingelectricity generation and load in real time (over
very short timeintervals). Effectivelyintegratinglarge amounts of variable generation will
require more flexible grid resources (such as energy storage) and advanced, real-time sensing
and control capabilities.
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FIGURE 34. HOURLY WIND GENERATION VARIATION AT ERCOT, 2017
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B. Decreased Frequency Response Capability and Decreasing
System Inertia

To ensure reliability, system frequency must be managed in a very tight band around 60 hertz."
Conventional, spinning generation (e.g., coal, nuclear, and gas-fired power plants with rotating
electrical generators) are synchronously connected to the grid and provide system inertia, i.e.,
the ability to maintain system frequency. Deviationsin frequency are corrected within seconds
by equipment that corrects the rotational speed of conventional generators. However, wind
and solar generators, storage devices and non-frequency responsive loads are not
synchronously connected to the grid and do not assistin maintaining systeminertia. Aswind,
solarenergy, and other non-synchronous DERs replace conventional synchronous generation,
we not only reduce total system inertia, but also reduce the number of generating units
availableto provide frequency response services. Underthese operating conditions, the grid
may not be able to prevent frequency decline caused by a sudden imbalance between supply
and demand and the system will become increasingly vulnerable to blackouts. Advanced
inverters and power electronics devices can address frequency response and other power
managementissues, especially at a local, distribution-system level. Asa result, a reductionin
the number of rotating generators will require an increase in the use of power electronic
devices, rather than electro-mechanical methods, to manage voltage, current, and frequency.
Advanced inverters and other power electronics technologies are available but still evolving.
Approachestointegrate their advanced capabilitiesinto legacy systems are needed, as well as
research effortsto lower their costs.

¥ The frequency of the electric grid in the United States is kept tightly at 60 hertz (+/- 0.5 Hz), or 60 cycles per
second. One cycleis equivalent to approximately 16 milliseconds. At 60 Hz, the current (movement of electrons)
in our wires reverses direction 120 times per second.
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C. Changing Load Patterns and Unpredictability

The impact of DERs on net load will be difficult to predict as we increase their number and type.
A mixed set of DERs can impact net load in multiple and random ways—some adding power
back to the grid, others storing power, others reducing consumption—at various times and
locations. Insome cases, this will challenge the ability of utilities to predict net load and plan
their resource needs, both short-and long-term.

As a result, a mixed set of DERs will lead to a great deal of variabilityand uncertaintyin the net
load profile observed by grid operators—even over the course of one day—as shown in Figure
35.8% In this figure, PV output lowers the net load observed by the utility; in this case, we can
see power flow back into the grid. Today, grid operators have limited visibility into DERs
located behind customer meters, creating grid control challenges where DERs are increasing.
Operators need sensingand control approaches and other observability strategies to monitor
and react to the fluctuating power of customer-owned DERs.

FIGURE 35. VARIABILITY AND UNCERTAINTY IN THE DISTRIBUTION NET LOAD PROFILE
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D. System Dynamics Becoming Both Faster and Unexpected

One of the central challenges in operatingelectric power systems is that electricity must be
generated (or delivered) in the exact momentit is consumed. Thefundamentalproblem that
must be addressed by system operators, therefore, is beingableto coordinate generation and
load inreal time. Thisoccurs on multiple levels with control methods appropriate to each
timescale.®”

As shown in Figure 36, the operationaltime periodsin which controls are applied can range
from years-to-decades to determine resource requirements through planning processes; days-
to-minutes forthe scheduling of resources to meet projected short-term demand (mostly
through market mechanisms); and sub-second-to-second timeframes for automated control
actions. Automated controlis required where system behavioroccurstoo fast for human
intervention or where the action needed is unsuitable for remote control due to
communication and system latencies.

FIGURE 36. GRID OPERATIONAL TIME PERIODS
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Bulk power systems have employed a variety of control methods as shown in Figure 36.
However, theincreasingadoption of distributed solar PVand the potential forincorporating
additional DERs have introduced greater variability in net load and energy exported into the
distribution grid. Thisresultsina more dynamicoperatingenvironment resultingin control
being pushed out from central stations to substations and distributed devices where automatic
or autonomous operationsare required. Forexample, a type of automaticoperationis
undertaken by automated feeder switching, discussed earlier, which must sense fault currents
in milliseconds and undertake operations to reconfigure the topology of a distribution system
within seconds.

As we increase variability, various functions, such as voltage management and protection
schemes, will need to not only work at faster timescales, but be modified to address the
reverse flow of energy from customer or merchant DERs on distribution systems. These
systems will need to operate with power electronics devices, such as advanced inverters, to
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quickly manage power flows and voltage levels. Such requirements are pushingthe next
generation of field automation and control systems beyond present day capabilities.

E. Need to Manage a Vastly Increasing Number of Endpoints

Widespread DER penetration implies that a grid control system will have to handle thousands
or millions of endpoints. The fundamental control problem isto manage bulk energy system
resources (e.g., power generation resources) and dispatchable DERs in a way that will not
compromise grid operating requirements, e.g., observing constraints on system frequency,
voltages, and the operatinglimits of grid components. Thisissue becomes more pronounced as
we increase the numberand types of DERs. In addition, theintegration of DERs thatare not
owned by utilities further complicatesthe problem shiftingit from one of direct control to a
combination of control and coordination.®®

FIGURE 37. COORDINATION AMONG PARTICIPANTS
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Coordinationis the process that causes or enables a set of decentralized elements to cooperate
to solve a common problem, thus becominga distributed system. As shown in Figure 37, the
various elements of the system will need to coordinate their activitiesin a way that does not
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jeopardize the overall reliability and safety of the grid. Coordination frameworks are required
to set therules governingthe interrelationships amongthe elements (e.g., grid devices and
participants) and to enable optimizationamongthem.?” Understanding how the various
participantsand grid devices coordinate will be important for ensuring optimal performance
duringnormal operations, but also how they would behave duringabnormal operations, such
as duringan unanticipated outage. Inthiscase, a coordinationand control strategy will be
needed where a microgrid may wish toisolateitselffrom the rest of the grid or provide
ancillary services needed to maintain system operations.

F. Growing Cyber Attack Risks to the Electric Grid

The growing frequency, sophistication, and effectiveness of cyber attacks over the last decade
mark the turning pointto an era of politically motivated and nation-state-level targeting of U.S.
energy infrastructure. Inrecent years, the energy sector has seen a dramaticincreasein
focused cyber probes, data exfiltration, and malware developed for potential attacks.% Unlike
attacks on business information technology (IT) systems, cyber attacks on grid operational
technology (OT) systems have the potential to disrupt power or fuel supplies, damage highly
specialized equipment, and threaten human health and safety.

Smart grid technologies present a double-edged sword for cybersecurity. Theincreasing
number of digitally connected devices that interact with grid control systems steadily and
significantly expandsthe potential attack surface by creating new entry points. Utility networks
increasingly include digital interfaces to a variety of emerging participants outside the utility
boundary. However, smart grid technologies can also build in resilience, adding visibility and
adaptablecontrolsthat can ultimately enableoperators to detect disruptions earlier, restore
faster, and operate the grid with more flexibility, including microgrid operationsthat can keep
portions of the grid operatingduringa disruption.

The integration of evolving IT and OT systems (described in Chapter lll, Evolution of Grid
Intelligence, on page 13) presents new cyber risks, as any successful cyber attack on business
systems can potentially migrate to operational systems. Forexample, the 2015 cyber attackon
Ukrainian electric utilities originated as a spear phishing attack on utility IT systems." Emerging
cyber threats also create restoration challenges for digital control systems, which vary widelyin
design and require highly specialized skillsand knowledge to operate. To restore physical
infrastructure duringa disaster, utilities often rely on mutual aid from other utilities who send
crews and equipmentto join restoration, which is largely seamless as the skills, terminology,
and equipment are common across the industry. Publicand private partnersinthe energy
industry are now addressinghow to provide cyber mutual aid, defining a set of skillsand
terminology need to support cyberinfrastructure recovery.®°

The energy industry faces an enormous challenge to build strong cybersecurity into new smart
grid technologies from the start, and design in cybersecurity to communication and control

“ On December 23, 2015, hackers attacked three different electric utilities, resulting in power loss for 225,000
customers for several hours. Attackers used spear phishing emails to gain access to the IT networks.
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networks, even as they rapidly evolve. DOE is working with the industry to develop standards,
tools, and next-generation communication and control systems that can withstand a cyber
attack without losingcritical functions. See Cybersecurity on page 77 in Chapter VIl for a more
complete discussion.
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VII. Moving Forward

The evolution of digital technology, includingadvances in computingand networking
capabilities, will ultimately transform the way the electric grid is designed, operated, and
connected with otherinfrastructures. Thetransitionto a more integrated and distributed grid
is occurring not only through the application of digital technology, providingintrinsicvalueto
utilities, but also by unpredictable patterns of customer behaviorand third parties driving the
adoptionof DER atthe grid edge. As a result, we can anticipate greater levels of variabilityand
uncertainty with regard to both managingenergy flows and adaptingto the integration of new
devices and systems. Asshown in Figure 38, addressingthis complexity will require new
capabilities, including transitioning from deterministicto probabilisticapproaches for grid
planningand operations.

FIGURE 38. HISTORICAL VS. EMERGING GRID CHARACTERISTICS
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Source: DOE, Quadrennial Technology Review, 2015.

Advanced smart grid capabilities should result in several performance improvements. These
include both the ability to adapt rapidly and optimally to fast-changing conditions, and to
anticipate them using faster-than-real-time, predictive analysis. Such capabilitieswill support
risk management approaches to address probabilitiesand improve resilience.

The electric grid is evolvinginto an ultra-large-scale system*® as it becomes more decentralized
and integrated with a variety of heterogeneous parts, which often have conflictingneeds and
objectives. The challengeis to institute the appropriate design considerations and processes so
we can maintain a stable, coherent, and manageable system asit evolves. To do so will require
smart grid advancements that apply grid architecture principles, coordinated planning, and
advanced technologies, as discussed in the following sections.

¥ An ultra-large-scale (ULS) system is characterized as a system that is highly decentralized, used by a variety of
stakeholders with potentially conflicting needs, evolving continuously, and constructed from heterogeneous parts.
Natural ecosystems and cities are examples of ULS systems; they are not necessarily designed through top-down
engineering, yet are highly complex and organized, made possible by fundamental components and processes that
enable coherent growth.
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A. Architectural Considerations

The electric grid is an intricate composite of several structures, includingthe physical structure,
the digital structure, the control structure, the market structure, the industry structure, and the
regulatory structure, as shownin Figure 39. Each of these structuresinterfaces with the others
and any modificationin one will impact how it may affect the others. The subject of grid
architectureis primarily concerned with the integration of these structures and how theyare
designed to enable advanced grid functions. Beginning with objectives, grid architecture
provides a disciplined approach to derive coherent structural designs. Grid modernization
strategies need to apply holisticapproaches to address complexity and minimize unintended
consequences.*!

FIGURE 39. STRUCTURAL RELATIONS CONSIDERED BY A GRID ARCHITECTURE DISCIPLINE
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Source: Provided by Jeffrey Taft, Chief Architect for Electric Grid Transformation, Pacific Northwest National
Laboratory.

DOE is now working with state commissions and utility partners to develop and apply the
discipline of grid architecture to determine the structural and functional requirements of an
advanced grid and to help institute holistic planning processes. Through this process, we can
better address variousissues arising from the integration of DERs, including:

e Developinggrid observability strategies and connectivity models.

e Determiningapproachesfor managing, monitoring, controlling, and securinga growing
number of grid devices.

e Applyinglayering, modularity, and interoperability considerations in the way multiple
grid systems are used, and in the way they exchange data.

e Designing control models that consider both centralized and distributed approaches.
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e Understandingwhen and under what circumstances to apply market versus control
mechanisms.

e Developingcoordination frameworks that are scalable and permitlocal and system
optimization.

Grid architecture also helps to simplify grid structure. Certain components of distribution
systems can be considered as core, foundational elementsand in this way remove the inherent
difficultiesin tryingto integrate siloed operations (see Figure 40). The core components would
form a supportinglayer or platform, consisting of, for example, information management
systems, operational data management, sensingand measurement, operational
communications, and the physical grid. Buildingoutthe core platform componentsatthe
appropriate pace and scale then becomes the chief consideration to enable anticipated future
functional capabilitiesand support new applications as they are needed.

FIGURE 40. DISTRIBUTION SYSTEM PLATFORM
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B. Planning and Business Considerations

A high DER future will require sophisticated planning tools and models, as well as new
planning approaches that integrate decisions across the transmission, distribution, and
customer domains. Existingresource and infrastructure planningtoolsand approacheswere
not designed for a complex grid where high levels of DERs can deliver power back to the grid
and reduce or shiftload in significant ways.

High-levels of DERs can introduce a variety of system issues, yet also offer value by providing
generating capacity, electrical energy, and various services like rampingand frequency support.
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As aresult, integrated planning processes should consider both system issues and value
streams for both transmission and distribution operations.

An integrated planningapproach, depicted in Figure 41, mustinclude several interconnected
analytical processes, including: °2

e lLong-term forecastingof load and DER adoption patterns.

e Hosting capacity analysisto determine what grid upgrades are required and where to
support DERintegration.

e Automated processesforenablingtherapid DER interconnection processes.

e Analysisofthe locational value that DERs provide to distribution systems, recognizing
that they can serve as non-wires alternatives to traditional grid upgrades.”

e Development of DER sourcing mechanisms that can entice customers and merchantsto
provide dispatchable DER services.

e Significant coordination between the transmission and distribution planning processes.

Multiple
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FIGURE 41. INTEGRATED PLANNING PROCESSES
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¥ As an example of non-wires alternatives, Con Edison established the Brooklyn-Queens Demand Management
(BQDM) project in which a range of demand-side options, obtained through auctions with DER service providers,
are being applied to meet a 69 MW shortfall in the growing Brooklyn and Queens boroughs of New York City —
rather than spending $1.2 billion for new substations, feeders, and switching stations.
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While traditional integrated resource planningis well developed for bulk power systems,
planners have few toolsto determine how DERs can best contribute to the overall resource
mix, and thereis growing recognition that transmissionand distribution system planning must
be more closely coordinated where high DER uptakeis occurring.®®

The analytical methodsand tools to support integrated distribution planning processes are
evolvingand require more sophistication. There are no mature assessment toolstodaythat
utilities can useto determine an optimal portfolio of DER non-wires alternatives. However, a
growing number of states have policies, dockets, or commission proceedings under way to
require detailed planningfor grid modernization, DER integration, and integrated distribution
system planning (see Figure 42).

FIGURE 42. PLANNING POLICIES FOR GRID MODERNIZATION, DER INTEGRATION, AND DISTRIBUTION
SYSTEM PLANNING
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Recommendations for Moving Forward, 2015.

Grid modernization must also recognize and plan for new technology maturity and adoption
lifecycles. Digital operational and control technology innovation now occurs at rates far faster
than thetraditional utility investment cycle. Legislative, regulatory, and customer expectations
of fast adoption for emerging technologies can create friction as utilities must adapt to new
technologies and capabilities, often by re-engineering complex business processes with
substantial workforce training.

Many of the technologies needed to enable a more integrated and distributed grid aresstill in
early stages of development, while others are much furtheralongthe typical technology
development curve (see Figure 43). This cycle progresses from research and development
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(R&D) through mature deployment, which—depending on the technology and complexity of
the upgrade—can take several years. Because the power grid demands very high levels of
operational performance, new technologies often must be extensively demonstrated and
proven reliable before a utility fully adopts them. Hence, the maturity of technologiesis
important to considerin setting rational timelines to meet policy objectives.

FIGURE 43. TECHNOLOGY DEVELOPMENT S-CURVE
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Source: Grid Modernization Considerations: DSPx Phase 2, presented to the New England Conference of Public
Utilities Commissioners, April 2018.

Recognition of the maturity of various technologies and how they enable advanced grid
capabilitieswould betterinform policymakers, regulators, and utilities in their planningand
development of realisticgrid modernization strategies. Forexample, Figure 44 shows a series
of technology development S-curves for metering technologies, from automated metering
reading (AMR) capabilities, which have been largely superseded by advanced metering
infrastructure (AMI) technologies, which will eventually be surpassed by more advanced meters
that serve as real-time sensors, which are still in an early stage of maturity today.
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FIGURE 44. PRODUCT LIFECYCLE OF METERING SYSTEMS
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Finally, there are no well-developed strategies for transitioning current utility business
models to more integrated, participatory systems. Business considerations playinto planning
processes where the participation of all partiesis required. Such business models will need to
address mechanismsthat can both compensate utilities for deployingthe requisite
infrastructure and incentivize prudent practices for applying grid services or capabilities
provided by non-utility players. Particularly, as utility revenues remain flat or diminishes, the
industry will need to examine and apply new mechanisms for recoveringfixed infrastructure
costs. Thereare no consistent approachesto determinethe appropriate pricingmechanismsto
recover the costs of a more complex and distributed grid.** In addition, rules will be needed
that establish requirements for non-utility market participants to allow DER participation while
guaranteeingreliability and affordability objectives. Thisis especially true for microgrids, which
will need to be synchronized with utility systems, yet potentially be required to provide services
to customersin the same manner as regulated utilities.

C. Smart Grid Technological Considerations

There are several key technology advancements needed to enable an integrated, complex,
distributed system thatis reliable and efficient. While a list of discrete research needs is
providedin AppendixA, smart grid technology advancements will be needed in five key areas:
1) modelingand analysis, 2) advanced energy management and control, 3) power electronics,

4) energy storage, and 5) cybersecurity.
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1. MODELINGAND ANALYSIS

The growing interconnectivity, interdependencies, and complexity of the electric power system
are requiringtools with enhanced modelingand simulation capabilities for both planningand
operational purposes. Current modelsare used to estimate grid conditionsbased on the
availability and accuracy of data to help operators manage the grid in real time. High-fidelity
models and simulationtools are needed, particularly with an increasing number of devices
requiring monitoringand control at much faster timescales. Grid planners will need more
granular modelingtoolsthat can predict the impacts of the myriad configurations of millions of
grid-connected devices, and determine the best technology solutions. Both planningand
operating models will need to employ probabilisticanalysis using vast amounts of data. Grid
operators will require improved sensingand measurement technologies that rapidly feed real-
time data into operating models with extremely fast analytical processingrates, from tens of
seconds to sub-seconds, enablingthem to move beyond monitoringand visualizationinto
automated controls. Modeling, simulation, and data analysis will also help utilities understand
the increasingly complex nature of the smart grid, particularly where emergent behavior can
surprise designers and operators.

FIGURE 45. PATHWAY TO SPEED IMPROVEMENTS IN ANALYTICAL DECISION MAKING
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Source: DOE, Quadrennial Technology Review, 2015.

As the grid transitions to one thatis analytically driven and controlled, foundational
improvements in operational models and simulators becomes even more critical. Validation of
models usingreal-world data and established use cases is needed before automationand
model-based control can be fully trusted.

2. ADVANCED ENERGY MANAGEMENT AND CONTROL

Future grid modernization efforts will likely concentrate on designingand demonstrating highly
advanced management and control systems, particularly for the distribution system, that
integrate enormous amounts of data into real-time operational control. With a growing
number of devices and endpoints to manage under tighter timeframes, operators will need
advanced control schemes that can manage more complex and unpredictableloads, dispatch
resources, and incorporate real-time and predictive analytics that will permit operators to make
smarter, faster operating decisions that save time, money, and energy and make the grid more
responsive to failures.
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Many of these advanced systems are still in early stages of development. Forexample, as
shown in Figure 46, while demand response management systems (DRMS)* are commercially
available, distributed energy resource management systems (DERMS)?® are at an early stage of
operational demonstration, particularly as the industry grapples with a single, unified version of
the technology. Meanwhile, microgrid interfaces® arein an operational demonstration phase
and have not been standardized. Interconnectionstandards are beingupdated to address
microgrid and DER interfaces.

FIGURE 46. DEMAND RESPONSE, MICROGRID, AND DER MANAGEMENT SYSTEM MATURITY
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Source: Grid Modernization Considerations: DSPx Phase 2, presented to the New England Conference of Public
Utilities Commissioners, April 2018.

Continued development and operational demonstrations are needed to adopt these and other
management and control systems that enable more flexible and automated control decisions.

3. POWER ELECTRONICS

The changinglandscape of generation and customer-owned technologies is fundamentally
alteringthe electric power flows and physical phenomena that grid components were designed
to accommodate. The pace of grid modernization and system changes demand hardware
solutionsthat are more dynamic, adaptable, and robust. The developmentand deploymentof
next-generation grid components, particularly power electronics technologies that incorporate
solid-state components, will play a critical rolein enabling future grid requirements. Devices,

z A DRMS interfaces with customers enrolled in demand management programs.

aa A DERMS is a software solution that incorporates a range of operations to adjust the production and/or
consumption levels of disparate DERs directly or through an aggregator.

bb A microgrid interface includes load disconnect/reconnect capability; measurement; communications; protection
devices that can enable seamless interoperability between interconnected, islanded modes; and synchronized
reconnection of a microgrid.
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such as solid-state transformers and power flow controllers, can be used in strategiclocations
to provide instantaneous control over the direction and magnitude of power flow, which will
significantlyimprove the capability and flexibility of the electric grid. New planningstrategies
are required tointegrate power electronics with legacy grid infrastructure; for example,
regulators and utilities, with assistance from the Department, are now in the process of
addressinghowto best deploy smart inverters, which are used to integrate solar PV systems
with the utility grid.

In addition, specificresearch needs are focused on improvingthe performance, applicability
and cost of these grid components, including:®

e Improvingthe performance of current designs by leveragingadvancesin new materials,
such as wide-bandgap semiconductor materials.

e Developingmodularand scalable designs, leadingto greater standardization and
allowing for more cost-effective capacity expansion, as standardized designs do not exist
for many grid components.

e Providinglocalintelligence with embedded sensors, data processing, and
communications to enable real-time monitoringand adaptive capabilities.

e Incorporatingcyberand physical security measuresinto the design of each component,
ratherthan added as an afterthought.

e Ensuringcustomerdata privacy given theincreasinguse and deployment of sensorsand
the vast amounts of consumer data generated, collected, and analyzed.

4. ENERGY STORAGE

Electric energy storage technologies are characterized by their capability to consume, store,
and discharge electric power when needed. These technologies can provide various benefits,
such as supportingbalancingand rampingrequirements, improving the economicdispatch of
resources, enhancing power quality and stability, and deferringinfrastructure investments.
They can also be deployed by customers for backup powerand more optimal use of generating
assets.

As variability and uncertainty increase, a substantial deploymentof energy storage is
anticipated to enhance system flexibility and control capabilities. Asshown in Figure 47, energy
storage technologies have distinct performance characteristics that make them suited to
particular grid applications.®’
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FIGURE 47. ENERGY STORAGE PERFORMANCE CHARACTERISTICS

UPS T&D Grid Support Bulk Power Mgt
Power Quality Load Shifting

Flow Batteries: Zn-Cl Zn-Air Zn-Br
VRB PSB New Chemistries

High-Energy Advanced Lead-Acid Battery
Supercapacitors NaNiCl, Battery

Hours

Li-lon Battery
Lead-Acid Battery

High-Power Flywheels

Discharge Time at Rated Power
Minutes

Seconds

1kW 10 kW 100 kW 1MW 10 MW 100 MW 1 GW
System Power Ratings, Module Size

High-Power Supercapacitors

R&D is required in several areasto address cost and technical performanceissues, as well as to
promoteindustry acceptance. Targeted researchis needed inthe development ofimproved
materials and in systems engineeringapproachesto resolve key technology cost and
performance challenges.

Examination of degradation and failure mechanisms, the development of mitigation strategies,
and accelerated life testing will help to validate the reliability and safety of energy storage
systems. Finally, the development ofindustry and regulatory agency accepted standards for
siting, grid integration, procurement, and performance evaluation will better support the
demonstration and deployment in utility systems.

5. CYBERSECURITY

Grid operations grow increasingly complex, while the frequency, scale, and sophistication of
cyber threats to the grid are rapidlyincreasing. Both factors create a growing need for
advanced digital sensingand control capabilities. Amodern grid requires rapid sensing, fast
and predictive analytics, and real-time modeling to make automated decisions; these same
capabilitiescan improve cyber attack detection and response.

The challenge todayis buildinginnovative cybersecurity capabilities into smart grid devices and
networks as they evolve, while anticipating future grid scenarios and designing next-generation
resilientand adaptive control systems. Federal agenciesand the energy industry have been
workingin close partnership since 2005 to reduce the risk of energy disruptions from a cyber
attack. Significant work has been done by this public-private partnershipto develop
cybersecurity standards for smart grid technologies, develop toolsand frameworks that bolster
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utility cybersecurity capabilities, share cyber risk information, and conduct advanced R&D for
energy delivery systems—but more is needed, particularly as cyber threats continue to evolve.

For more than a decade, DOE’s Cybersecurity for Energy Delivery Systems (CEDS) program has
funded a diverse portfolio of cybersecurity R&D led by partnerships of industry, cybersecurity
vendors, academia, and nationallaboratories. To date, CEDS has delivered more than 38
products, tools, and technologies to help secure critical cyber systems and networks, some of
which are now in place at thousands of U.S. utilities. As utilities deploy new smart grid devices
and networks, innovative and incremental cybersecurity technologiesare needed that can
prevent, detect, and mitigate a growing range of threats while respecting the needs of existing,
legacy systems.

More importantly, advanced RD&D is needed that will build cyber resilience into the next
generation of energy management and control systems. CEDS R&D today focuses on
anticipating future energy sector attack scenarios and designing cybersecurity into emerging
technologies, such as cloud networks for utility data analytics, distribution-level energy
management systems that will coordinate microgrid operations, and secure synchrophasor
systems to enable real-time control. R&D projects are also examininghow to design future
power systems and components that automatically detect, reject, or withstand a cyber
incident, adaptingas needed to keep operatingeven under attack. Several projectsare
examining future system designs that recognize and refuse to take any action that does not
support grid stability, which limits the damage an attacker can create even if they successfully
infiltrate a utility network.

The energy industry will also need advanced tools, standards, and guidelines to build and
operate secure smart grid systems. Over the past decade, DOE has worked with the energy
industry to design the Cybersecurity Capability Maturity Model (C2M2), a tool that utilities can
use to assess and prioritize improvements to their cybersecurity capabilities. DOE also worked
with NIST in developingthe Cybersecurity Framework, a voluntary framework that aligns with
the C2M2, which utilities can use to design or improve their cyber risk management program.

While these tools help utilities strengthen their cyber practices, continued efforts are needed to
develop strong cybersecurity standardsthat utilities and vendors can usein designingand
building smart grid networks and systems. Since 2010, DOE has supported NIST and energy
industry partnersin developing cybersecurity guidelines for smart grid vendors and utilities, but
additional workis needed as technologies advance and evolve.

6. INTEROPERABILITY STANDARDS

The application of digital technology has provided an opportunity for enhanced sensing,
coordinationand control of the various elements that constitute the electric grid. This
capability requires the ability of devices and computing platforms to readily shareinformation
and operateina coordinated manner, requiringthe development and implementation of
industry-accepted interoperability standards and protocols. Thisis becomingespecially
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important, as devices proliferate at the grid edge, as is being witnessed through the adoption of
DERs in various parts of the country.

Over the past five years, significant technologicaladvancesin smart grid infrastructure have
beenimplemented, supported by standards developmentacross the entire smart grid arena.
Examplesinclude widespread deployment of wireless communication power meters,
availability of customer energy usage data through the Green Button initiative, remote sensing
for determiningreal-time transmission and distribution status, and protocols for electric vehicle
charging.®

Standards and protocols guiding communications and control requirements, such as [EC 61850
and |EEE 1547-2018,°° are being developed and applied with significant efforts by the private
sector and industry-led groups to ensure interoperability and security. Asthereare hundreds
of standards beingdeveloped, continued assessment and coordination by the federal
governmentis recommended to ensure that interoperability and cybersecurity standards
evolve and are implemented at a pace sufficient to support needed technology deployment. In
addition, significant effort is required to determine how to implement the new or revised
standards with respect to legacy technology. For example, DOE has worked closely with IEEE to
develop IEEE 2030.7, the Standard for the Specification of Microgrid Controllers. DOE isalso
working with state regulators to assistin the development of strategies for the effective
deployment of IEEE 1547-2018, which provides new functions for smart inverters.

The National Institute of Standards and Technology (NIST), within the U.S. Department of
Commerce, works collaboratively with the private sector to facilitate and coordinate smart grid
interoperability standards developmentand smart grid-related measurement science and
technology. EISA assignsto the National Institute of Standards and Technology (NIST) the
“primary responsibility to coordinate development of a framework thatincludes protocols and
model standards forinformation managementto achieve interoperability of smart grid devices
and systems....”*°

Over the past several years, there has been a proliferation of standards development with
respect to how devices can effectively integrate with the grid and now there exist hundreds of
grid-related standards. Theseinteroperability standardsinclude requirements for the physical
performance of the devices, communication protocols and data models to enable the effective
integration between grid components, as well as with utility operational and computing
systems. Forseveral years, NIST categorized the standards accordingto the specificdomain
that they served, e.g., the transmission, distribution, utility and customer domains.°°

However, as the responsibility for sensingand control has migrated across the various domains,
and alsoto devices at the edge of the grid, we are witnessingan overlapping of many standards

“ The IEEE 1547-2018 standard updates the original 1547 standard released in 2003, and significantly expands the
functional capabilities (e.g., ride through, anti-islanding, and power quality functions) of inverter technology,
enabling the more effective integration of DERs.
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development efforts. Asa result, NIST has recognized that the traditional approach for parsing
standardsinto the various domainsis breaking down.

To illustrate, therevised IEEE 1547 standard now requires smartinverters to be compatible
with one of three separate communications protocols and, when combined with the associated
data models and other recommendationsin the standard, there are more than a dozen
different combinations of communications protocols and data models that could bringa smart
inverterinto compliance with the standard. Thisinteroperability complexity makes it difficult
for utilities orthe inverter purchaser to ensure an inverter will work within their system even if
it is compliant with the current standard. Through their ongoingefforts to develop the next
version of an interoperability framework, NIST is reaching out to the industry to address this
complexity and clarify performance requirements for communications protocolsand data
models.

In addition, the majority of the standards and protocols are not accompanied by independent
testingand certification programs. This hasresulted in the manufacturing of grid devices that
do not necessarily comply with the interoperability standards for which they were designed.®!
Without a guarantee of the compliance of devices with standards, the ability to achieve the
efficientintegration of devices with the grid will become difficult. Anapproach toaddressthis
issueis for NIST to work with the industry to prioritize the set of interoperability standardsand
identify requirements that would lead to an industry-led program for testing and certification.

D. Workforce Considerations

The electricity industry will need a cross-disciplinary workforce that can comprehend, design,
and manage cyber-physical systems, as well as apply risk management, advanced modelingand
behavioral science skills. The evolvingdemands on the electricity industry are causing several
workforce challenges for the industry, including a skills gap for deployingand operating newer
technologies and changes occurring duringa period when the industry is facing high levels of
retirements.%?

Utility executives have reported that replacing their aging workforce continuesto be a top
priority.'® Thisissue hasimproved somewhat over the past ten years, as shown in Figure
48.1% However, the retention of qualified and diverse candidates is a challenge many now see
as outpacingtheissue of an aging workforce, as skills requirements are changing rapidly due to
grid modernization. The application of digital technology, in particular, is requiring a greater
number of highly technical workers and engineers that can build, manage and protect these
systems. Asa result, the electricindustryis continuingto face challengesin attracting,
recruiting, and hiring qualified applicants.'”
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FIGURE 48. AGE DISTRIBUTION IN ELECTRICAND NATURAL GAS UTILITIES, 2006-2014
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of the Energy Workforce, 2016.

One of the significant challengesisfillinggaps in the talent pipeline. Training programsand
schoolsthat produce the applicant pool still do not reflect the gender and racial diversity in the
country.'®® While the long-range prediction of workforce shortages hasimproved considerably
in the past decade, some job classifications, engineers and technicians, especially, continue to
face shortages of entry-level and experienced workers.%” Sixty-eight of the firms surveyed in a
study conducted for the Department cited insufficient qualifications, certifications, or education
and lack of experience, training, and technical skills as the most reported reasons for difficulty
in hiring competent workers.*%®

One of the key skills needed isin cybersecurity. Cisco reportsthatsecurity professionals cite
budget, interoperability, and personnelas their key constraints when managingsecurity (see
Figure 49). The lack of trained personnelwas identified as a key and growing challenge to
adoptingadvanced security processes and technology across the industries they serve,
including the electric power industry. %
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FIGURE 49. KEY CONSTRAINTS IN MANAGING SECURITY
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VIII. Conclusions

This report conveys the status of smart grid deployments across the nation, the capabilities
they provide, and the challenges remainingas we move forward with the modernization of the
electric grid. Over the past decade, utilities have deployed smart grid technologies to improve
the reliability and efficiency of their operations and to better engage utility customersin the
management of energy. However, more recently, we are witnessingthe rapid adoption of
DERs, such as photovoltaicsystems and energy storage technologies, and increasing ownership
of distributed assets by utility customers and third-party merchants.

The effective integration of the grid with a mixed set of DERS, combined with the potential for
shared ownership of grid services among utilities, customers and merchants, presents a greater
level of complexity than the grid was originally designed to accommodate. Asa result, we can
anticipate adramatictransformation in the structural and functional aspects of the grid that
will require the advancement and use of digitally-based, smart grid technologies. Thisis now
occurring where we can see high levels of DER adoption.

Although the adoption of smart grid technologyis not occurring at the same rate across the
country, as is appropriatebased on local needs for advanced capabilities, one can envision a
trend to a more integrated and distributed electricgrid where large-scale DER integration will
occur. In addition, digital technologies will eventually lead to the formation of information
networks that will promote the convergence of the electric grid with otherinfrastructures, such
as buildings, transportation and telecommunications. Given the billions of dollars spent
annually onupgradingthe electricinfrastructure, itis vitallyimportant that investments made
todaycan supportan evolvinggrid for decades to come.

Addressingthis challenge will require the application of holistic planning approaches that
consider long-range possibilities and integratethe considerations of utilities, customers, grid
service providers, and technology developers. It will also require the developmentand
application of technologies that can readily adapt to dynamic conditions, coordinate millions of
devices, and provide secure and resilient operations.
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IX. Appendix A: Grid Modernization RD&D Needs

The research, development, and demonstration needs identified here come directly from DOE’s
2015 Quadrennial Technology Review.

FIGURE 50. MOVING FROM TRADITIONAL TO MODERN ELECTRICPOWER SYSTEMS - RD&D NEEDS
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