Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

> H.-T. Lin, H. Wang*, and A. A. Wereszczak Oak Ridge National Laboratory

Randy Stafford and Douglas Memering Cummins Inc.

2014 Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting Washington, DC June 19, 2014

> Project ID #: PM051

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Oct 2008
- Finish Sept 2014

Budget

- Total project funding
 - DOE \$1,540K
 - 2013 \$190K
 - 2014 \$150K
 - Cummins \$1,540K Cost Share (DOE CRADA)

*Vehicle Technologies Program, Multi-Year Program Plan, 2011-2015

Barriers*

- Changing internal combustion engine combustion regimes
 - Peak cylinder pressure
 - Fuel injection pressure
 - Fuel formulations
- Long lead times for materials commercialization

Target

- Advanced fuel injection system with pressures > 2800 bar
- 50% improvement in freight hauling efficiency by 2015

Partners

- > Cummins, Inc.
- > EPCOS
- Kinetic Ceramics, Inc.

Relevance - Piezoactuation Enables Precise Rate Shaping and Control of Timing and Quantity

Piezostack used in a fuel injector (Kim et al, SAE 2005-01-0911) Spray control of solenoid fuel injectors is limited Piezo fuel injector can improve fuel efficiency and reduce NOx emission and noise

Applied voltage: <200V; Frequency: 200Hz; Displacement: 80 µm; Force: 3000N; Temperature: <150°C; Lifetime: 1 million miles

Objectives - Relevance

- Generate required mechanical data on PZT (lead zirconate titanate) piezoceramics under working conditions equivalent to piezo fuel injector.
- Conduct fatigue and dielectric breakdown testing on actuator components.
- Characterize fatigue responses of PZTs with respect to the application in fuel injection system.
- Develop experimental approach to testing mechanical strength of PZT stacks.
- Use probabilistic design sensitivity analysis with FEA to identify optimum design of PZT multilayer piezoactuator.

Milestones

- Sept 2013: Effects of humidity and temperature (80% RH, 85šC) on the mechanical properties of PZT ceramics. Completed.
- ➢ FY14:
- Complete the preparation of setup for mechanical testing and finish the treatment of PZT specimens in controlled humidity and temperature (80% RH, 85°C). Completed
- Complete study of the effects of humidity and temperature on the mechanical properties of supplied down-selected and equivalent PZT ceramics. Completed
- Complete the preparation of setup and adaptation of testing facility for electric cycle fatigue test of PZT stacks at controlled temperature environment. *In progress and on schedule*
- Complete study of cyclic fatigue of down-selected PZT stacks in temperature environment equivalent to that of fuel injection system in heavy-duty diesel engine (100 to 200°C). In progress and on schedule

Approach

- Measure and compare mechanical properties of PZT piezoceramics that are candidates for use in piezoactuators.
- Measure response and reliability of piezoactuators and link to measured piezoceramic properties.
- Adapt to fuel injectors for Heavy Duty Diesel engines.

Accomplishments

Temperature and Humidity Effects Were Investigated by Pretreating PZT in an Environmental Chamber

 A vacuum oven (Fisher 281) was used along with KBr solution for environmental control: 79% R.H. at 80°C
12 10-layer PZT specimens were treated 30 days.

No Significant Difference Was Found in Mechanical Strengths Between the As-Received and the Treated

> Mechanical strength of PZT was studied using ball-on-ring testing.

The two data sets overlap to a great extent. Performance of PZT subjected to long-term humidity and temperature exposure remains to be investigated.

Pre-Fatigue Condition of Extracted PZT Plates Was Examined by Impedance Analysis

- > 10- and 20-layer specimens were electrically wired at first.
- Impedance data were collected using an impedance analyzer (Solartron 1260): 50mV AC, 10 mHz - 100 KHz.

Impedance Analysis-Based Capacitances Were Approximately 250 nF for 20-Layer PZT Specimens

> Nyquist plots are given for a set of 20-layer specimens on the left.

- Parallel RC element was used in the analysis of impedance data.
- Large scattering in resistance (37 to 970 Mohm) was observed also.

ORNL Piezodilatometer Was Used to Characterize PZT Stack Electric Fatigue

Electric field is applied in X3; piezoelectric response in X1 (d_{31}) and dielectric response in X3 (ϵ_{33}) are focused.

Piezodilatomer developed by ORNL

- > Cycling: 3.0/0.0 kV/mm, 100Hz; 10^8 stop cycles.
- Measurement: 3.0/0.0 kV/mm, piezoelectric at 0.1Hz, dielectric at 50Hz.
- > FC-40 dielectric fluid is used to suppress dielectric breakdown.

Substantial Degradation Occurred in Both Piezoelectric and Dielectric Coefficients

- The number of layers plays an important role in fatigue of piezoelectric coefficient, and the dielectric itself largely depends on the number of layers also.
- The results are critical input for further analysis of PZT stacks. No relevant data are available now.

Significant Difference Was Seen in Impedance Responses Between Fatigued and Failed Specimens

- The Nyquist plot fluctuated in the cycle test of a 20-layer specimen (left side).
- The Nyquist plot changed into a well-defined semi-circle after breakdown in another 20-layer specimen (right side).

Capacitance C Showed a Defined Decreasing Trend with Accumulated Cycles

- Capacitance C decreased with the number of cycles. No defined trend can be seen in Resistance R.
- Impedance analysis can be a potential tool for structural health monitoring of PZT stacks in service.

Accomplishments (continued) Extensive Burnings due to Electrical Discharge Were Observed in Failed Stacks

Extended burning zone on termination and nontermination sides in a 10layer specimen.

Localized burning on non-termination side in a 20-layer specimen.

Accomplishments (continued) Damages within Tested Stacks Were Revealed by Scanning Acoustic Microscopy (SAM)

Localized structural damages were shown in the gray areas of images on a tested 20-layer specimen.

Accomplishments (continued) Degradation of Internal Electrode Corresponded Well to the Damage Shown in SAM Images

The 20-layer specimen imaged by SAM was sectioned and polished.

A melted internal electrode layer has been found to be related to the gray zone in SAM images.

Collaborations

Partners

- Cummins: an ORNL-Cummins CRADA on "Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors" was officially executed Oct. 2008. It will end Sept. 2014.
- EPCOS: collaborations to systematically manufacture the PZT ceramic specimens and stacks needed to understand the effect of material processing and test conditions on the component degradation processes.

> Technology transfer

- ✓ HDD fuel injector will be designed and commercialized by Cummins Inc.
- CRADA with Cummins Inc. facilitates the optimization of PZT stacks for HDD fuel injector to achieve 55% engine thermal efficiency by 2018.
- Collaborations with EPCOS provides key inputs to the PZT material suppliers to optimize the PZT process and stack component design to improve the long-term reliability of PZT actuators.

Future Work

- Perform fatigue tests and update database for downselected candidate EPCOS piezoceramics and PZT stacks of Cummins, Inc.
- Study piezoelectric and mechanical reliability of PZT with emphasis on humidity and temperature effects.
- Evaluate accelerated electric fatigue response of PZT stacks fabricated via tape-cast process.
- Use probabilistic design sensitivity analysis with FEA to identify optimum design of PZT multilayer actuator.

- Relevance: PZT ceramic actuator provides key technology to improve fuel efficiency and reduce emission of HDD engine
- Approach: measure and characterize PZT ceramics and stacks under electric fatigue and controlled environment
- Collaborations: Cummins (HDD engine) and EPCOS (PZT supplier)
- Technical Accomplishments:
 - Humidity and temperature effects on mechanical strength of PZT were studied by pretreating 10-layer specimens along with ball-on-ring testing.
 - Experimental study on down-selected piezo stacks has been successfully completed using 20/10-layer extracted specimens.
 - Substantial degradations were observed in both piezoelectric and dielectric coefficients during high-field cycle tests.
- Future work:
 - Evaluate mechanical performance of PZT ceramics under combined temperature, humility, and electric field
 - Electric cycle fatigue tests on PZT stacks under simulated application environments
 - Optimum design of PZT multilayer actuator using probabilistic component design

