







# Demonstration/Development of Reactivity Controlled Compression Ignition (RCCI) Combustion for High Efficiency, Low Emissions Vehicle Applications

# Dr. Rolf Reitz

### Wisconsin Engine Research Consultants June 16-20, 2014

Project ID: FT015

# Overview

# Timeline

- Start October 1, 2011
- End September 30, 2014
- 85% Complete

# Budget

- Total project funding
  - DOE \$1.5M
  - Contractor \$0.375M
- Spending FY11 \$42K
- Spending FY12 \$713K
- Spending FY13 \$640K

# Barriers

- Barriers addressed
  - LD: Reduced emissions with thermal efficiency comparable to diesel.
  - HD: Extend RCCI operating range to higher engine loads with reduced emissions facilitated by reduced pressure rise rates.

# Partners

- Industry, University, Government Lab:
  Caterpillar
  Engine Research Center UW-Madison
  Oak Ridge National Laboratory
- Project lead: Wisconsin Engine Research Consultants (WERC)

# **Objectives/Relevance**

### **Objectives**

- Develop combustion systems that facilitate extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) while maintaining stateof-the-art direct injection diesel engine thermal efficiency or better.
   Targets addressed
- LD emissions-regulated drive cycle operation and HD load extension.
- Focus on low emission dual-fuel combustion regime, RCCI.
- Create and apply advanced tools needed for high-efficiency, low-emissions engine design – synergistic use of high fidelity computing and highresolution engine experiments.
- Peak Pressure Rise Rate: critical parameter for both LD and HD. Focus combustion system development on minimizing PPRR while maintaining low emissions and high thermal efficiency.

### Impact

- Novel combustion system analytically designed that greatly reduces PPRR while achieving reduced emissions and comparable thermal efficiency.
- New HD test cell and engine installed for extended load operation.

# Project Milestones: 1=WERC, 2=ORNL, 3=UW

| Month /<br>Year | Task | Milestone or Go/No-Go<br>Decision | Description                                           | Status          |
|-----------------|------|-----------------------------------|-------------------------------------------------------|-----------------|
| rour            |      |                                   | Validation of CFD model to available HD test          |                 |
| Mar 2012        | 1.6  | Initial HD Model Validation       | results                                               | Complete        |
|                 |      |                                   |                                                       | <u> </u>        |
| Mar 2012        | 2.1  | Initial LD RCCI                   | Demonstrate LD RCCI.                                  | Complete        |
|                 |      |                                   |                                                       |                 |
| Apr 2012        | 1.2  | Initial LD Model Validation       | Validation of CFD model to initial LD test results    | Complete        |
|                 |      | Initial LD Particulate            |                                                       |                 |
| Sep 2012        | 2.2  | Characterization                  | LD particulate characterization with gasoline/diesel. | Complete        |
|                 |      |                                   |                                                       |                 |
| Dec 2012        | 3.1  | HD Install Complete               | Completion of HD engine/dyno install.                 | Complete        |
|                 |      |                                   | HD demonstration of conventional diesel               |                 |
| Mar 2013        | 3.2  | HD Initial Testing                | combustion.                                           | Complete        |
|                 |      | LD RCCI with                      | LD demonstration of RCCI combustion with              |                 |
| Dec 2013        | 2.3  | gasoline/gasoline+cetane          | gasoline/gasoline+cetane improver.                    | Complete        |
| Dec 2013        | 3.3  | HD RCCI demonstration             | Demonstrate HD RCCI.                                  | Complete        |
| Dec 2015        | 5.5  |                                   | Demonstrate RCCI with CFD designed combustion         | Complete        |
| Apr 2014        | 2.5  | LD Final RCCI                     | system.                                               | On-going        |
| 11p1 2011       | 2.0  |                                   | Demonstrate RCCI with CFD designed combustion         | on going        |
| Apr 2014        | 3.4  | HD Final RCCI                     | system.                                               | On-going        |
| Jul 2014        | 1.10 | LD Final Spec.                    | CFD final update of combustion system.                | <b>On-going</b> |
| Jul 2014        | 1.11 | HD Final Spec.                    | CFD final update of combustion system.                | <b>On-going</b> |
| Sep 2014        | 2.5  | Final LD Performance              | Final results from LD testing.                        | <b>On-going</b> |
| Sep 2014        | 3.4  | Final HD Performance              | Final results from HD testing.                        | <b>On-going</b> |
|                 |      | Final Particulate                 |                                                       |                 |
| Sep 2014        | 2.4  | Characterization                  | Particulate characterization for fuel composition.    | <b>On-going</b> |

# Approach

### **LD Combustion System Development**

#### Overall Goal

- Minimize emissions with thermal efficiency similar to state-of-art diesel over emissions-regulated drive cycles.
- LD Simulation (WERC)
  - Optimize combustion system with gasoline/diesel using state-of-the-art CFD models.

### LD Testing (ORNL)

- Optimize RCCI strategy with gasoline/diesel and gasoline/gasoline+cetane improver.
- Particulate characterization with both fuel strategies.
- Experimental engine testing with WERC optimized combustion system.

### **HD** Combustion System Development

- Overall Goal
  - Maximize RCCI load capability while facilitating low NOx and PM emissions.
- HD Simulation (WERC)
  - Optimized piston bowl/nozzle for RCCI with gasoline/diesel.
  - Optimize dual-fuel direct injection strategies.

### HD Testing (UW)

- Install new high-load capable engine.
- Optimize dual fuel direct injection strategies.

### Task 1.2 – LD Validation/Support Gasoline/Diesel Task 1.4 – LD Validation/Support Gasoline/Gasoline + Cetane Improver

#### Approach

- KIVA3V WERC
  - Advanced CFD spray and combustion models
  - Detailed chemistry: PRF and EHN mechanisms (47-60 species)
  - GM 1.9L 4-cylinder production engine
    - Cylinder pressure and emissions data taken at 6 'ad hoc' steady-state conditions
    - Speed range from 1000 to 2600 rev/min and load range from 1 to 8.8 bar BMEP

#### **Accomplishments**



- Predicted measured trends
- Cylinder pressure and HRR
- Soot, NOx and CO emissions

Plans for Wrap-Up

Task 1.2 Complete

Task 1.4 Finish gasoline+EHN validation



# Task 1.3 – LD Gasoline/Diesel CFD

#### Approach

- CFD-designed combustion system
  - Based on validated engine model, an exploration of novel bowl designs suited to pre-mixed combustion was performed.

### **Accomplishments**

- Development of 2-zone combustion system (patent pending)
  - Features separated inner and larger outer volumes to stage combustion event
  - As in RCCI, premixed gasoline at IVC, optimized direct injection(s) of reactive fuel (diesel) during compression
  - Combustion sequence begins with ignition in inner volume
  - Combustion products from inner volume jet across channel to ignite outer volume
  - Combustion products from outer volume flow back to inner volume to cool and oxidize any remaining fuel

### Plans for Wrap-Up







# Task 1.3 – LD Gasoline/Diesel CFD (cont.)

#### Approach

- CFD-designed combustion system
  - Based on validated engine model, an exploration of novel bowl designs suited to pre-mixed combustion was performed.

#### <u>Accomplishments</u>

- Development of 2-zone combustion system (patent pending)
  - Optimization of separated inner and larger outer volumes and DI injection timings
  - Decreases peak pressure and RoPR
  - Decreases UHC and CO emissions.
  - NOx/PM levels within regulated targets
- Prototype piston designed and delivered to ORNL for testing
  - 3d cad model used directly to CNC machine piston blanks

Plans for Wrap-Up

Task Complete



RCCI piston—Case 6 8.8 bar

early injection best SOI-56

late injection best SOI -24

12 +

10

8

6

2-zone piston

300

275

250

225

200

100

50

co (gm/kw-hr)

# Task 1.6 – HD Validation Conventional and RCCI

#### Approach

- KIVA3V WERC
  - Advanced CFD spray and combustion models
  - Detailed chemistry: PRF mechanism (47 species, 74 reactions)

### C15 RCCI engine data (Caterpillar)

- Load sweeps at 1200 and 1800 rpm
- BMEP 8 -18 bar
- Geometric CR 12
- Port injection gasoline, DI diesel
- Near zero soot and NOx emissions

#### **Accomplishments**

- Validated ability to predict RCCI over load and speed ranges
  - Predicted measured trends
  - Cylinder pressure, HRR and RoPR
  - Soot, NOx and CO emissions

### Plans for Wrap-Up

Task completed



# Task 1.7 – HD CFD DoE Studies

#### Approach

- Novel 2-zone piston geometry (patent pending) 2 -
  - Optimize volume split between two combustion zones and clearance height
  - 18 bar BMEP, 1200 rev/min

#### **Accomplishments**

- Developed strategies for RCCI load extension
  - Open chamber has excessive peak RoPR and / or excessive uHC emissions at high load.
  - 2-zone piston greatly improves RoPR vs. uHC emissions trade-off. Enables mandated emissions targets to be met with acceptable peak RoPR.
  - Strong jet flows between 2 zones enhance mixing → significant reduction in uHC and CO emissions.
  - 2-zone combustion system is potential breakthrough technology for enabling practical implementation of RCCI combustion in HD engines.

2 - zone









Note: uHC emissions target assumes use of DOC

# Task 1.7 – HD CFD DoE Studies

#### Accomplishments (cont.)

- Developed strategies for RCCI load extension
  - Soot and NOx targets based HD onhighway engine-out mandates.
  - RCCI combustion has near zero soot and NOX emissions.
  - Fuel consumption target met based on 10% reduction from conventional diesel.
  - New combustion system reduces fuel consumption (gisfc) up to 12% compared to conventional diesel combustion while maintaining control over RoPR.
  - Near optimal results with 60/40 volume split (outer/inner) and ~1mm clearance height (squish).

Plans for Wrap-Up

- Further exploration of 2-zone concept
  - 18 bar BMEP, 1800 rev/min



Note: gisfc for valves-closed portion of cycle

# Task 2.1 – LD Gasoline/Diesel Experiments

### Approach

- Ad-hoc modal points used to prescribe engine speed and load conditions for LD RCCI experiments with gasoline/diesel fuel
- Key engine parameter sweeps performed for model validation and for engine performance and emissions characterization

#### **Accomplishments**

- Provided detailed data sets for model validation
- Baseline data obtained for WERC piston bowl development

#### Plans for Wrap-Up

 Compare open bowl results to WERC 2zone piston results



## Task 2.2 – LD Gasoline/Diesel PM Characterization

#### Approach

- Examined RCCI and CDC with PRF fuels and known lube oil
  - Low (froth point), medium and high load
  - Look for metals that present in lube oil and lube oil components
- Several techniques used
  - X-ray fluorescence (XRF) elemental composition
  - Filters for mass measurement
  - Filters for pyrolysis GC-MS composition

#### **Accomplishments**

- XRF results show that RCCI does not have significant contribution of lube oil to PM
- RCCI resulted in much lower PM than CDC

#### Plans for Wrap-Up

- Completed task, followed up with MCE piston study with EHN (see backup slides)
  - Follow-up studies with WERC 2-zone piston will be compared to RCCI piston





Lube Metals Higher with CDC and ULSD

### <u>Task 2.3</u> – LD Gasoline/Gasoline+Cetane Improver Experiments

#### Approach

- Validation data obtained on ORNL MCE for RCCI with PFI gasoline and DI gasoline+cetane improver (EHN)
- 2.5%, 5%, and 10% EHN by volume added to the gasoline. Infinium lubricity additive used at a rate of 0.3 mL/L

#### **Accomplishments**

- Detailed sweeps of premixed-DI fuel ratios, DI SOI timings, boost pressures and intake temperatures for multiple EHN levels
- Results: High BTE, low NOx and Soot possible with low total additive quantities

#### Plans for Wrap-Up

- Additional analysis on organo-nitrates sampling
- Publish paper on findings from singlecylinder and multi-cylinder experiments



#### Experimental PFI-DI ratio sweep for 5 and 10% EHN DI fuel

# Task 2.5 – LD Experiments with WERC Bowl/Nozzle

#### Approach

- Comparison against detailed data with openbowl design and CDC
  - Detailed sweeps comparing at multiple operating conditions
  - Compare to CDC with base OEM engine too

#### **Accomplishments**

- Installation of WERC pistons in multi-cylinder engine
  - Installed pistons in new short block top end same as for baseline data
- Initial comparison underway
  - Preliminary results show lower PPRR with 2-zone piston design

Plans for Wrap-Up

- Complete experiments
- Noise investigation
  - AVL combustion noise & microphone noise if needed
- Joint paper on experimental findings and model validation covering entire project





Preliminary pressure and heat release rate comparisons of WERC 2-zone and RCCI openbowl pistons at 2000 rev/min/4 bar BMEP



2-zone pistons Installed in MCE Engine

### <u>Task 3.1</u> – HD Test Cell Setup/C15 Engine Install <u>Task 3.2</u> – HD Break-in/Baseline Experiments

### Approach

- Develop test cell capable of high-load RCCI testing with facilities for complete thermodynamic analysis
  - Single-cylinder version of Caterpillar C-15 engine installed; capable of 25 bar BMEP load and 23 MPa peak cylinder pressure; dyno capable for full operation range of engine
  - Air handling system developed for 4 bar intake MAP and 5 bar exhaust pressure and high levels of EGR
  - Two fuel systems developed: high pressure common rail for diesel, low pressure PFI system for gasoline

#### **Accomplishments**

- Engine installed and test cell demonstrated over the full load / speed range of the engine
- Baseline comparisons to data provided by Caterpillar
- Heat release analysis, fuel and emission systems verified - carbon balance calculated using both systems is within acceptable range

Plans for Wrap-Up

 All major systems have been verified, data acquisition in progress





## Task 3.3 – HD Gasoline/Diesel Experiments

#### Approach

- Compare conventional diesel combustion (CDC), early- and late-injection RCCI
  - 1300 rev/min / 8 bar IMEPg
  - Intake conditions constant: 1.75 bar (abs) and 25 °C
  - EGR rate: CDC 0%; RCCI (both) 60%

**Accomplishments** 

- Testing performed for range of combustion CA50 by varying injection timing (CDC, late-injection RCCI) or fuel split (early-injection RCCI)
  - NOx emissions for both RCCI conditions significantly below the CDC data (note scale break)
  - RCCI and CDC peak pressure rise rates comparable
  - Early-injection RCCI heat release profile smooth; late-RCCI heat release shows characteristics of diesel combustion at early times, then homogeneous ignition

#### Plans for Wrap-Up

- Explore load range of engine with standard fuels
  - Dual-injector (allowing gasoline and diesel direct injection) head designed - being machined by Caterpillar



### Tech. Transfer & Collaborations/Interactions

U. S. Department of Energy National Energy Technology Laboratory FY 2011 Vehicle Technologies Project DE-EE0005423

<u>Collaborators</u>: Wisconsin Engine Research Consultants Engine Research Center UW-Madison Oak Ridge National Laboratory Caterpillar

Tech transfer:

- Teleconference and face-to-face meetings.
- Department of Energy quarterly reports.
- Fuel & Lubricant Technologies FY 2013 Annual Progress Report

### **Future Work**

- Continue development of LD and HD combustion systems.
- Test and analytically refine concept piston in LD engine.
  - Gasoline/diesel dual fuel RCCL
  - Optimize piston shape/spray interactions.
- Complete particulate characterization study.
- Finish analytical model validation to gasoline / gasoline+EHN test data.
- Test concept piston with gasoline / gasoline+EHN.
- Continue HD combustion system development.
  - Analytical combustion system optimization.
  - Experimental load extension investigation.
  - Update HD engine with dual-fuel direct-injection head and investigate benefits.



2 – zone piston optimization



WERC 2-zone piston installed and being tested



### Summary

#### **Relevance**

Project is relevant to DOE goal of low emissions, high thermal efficiency engines.

#### Approach

- Advanced CFD spray and combustion models validated with engine experimental data from ORNL (LD), Caterpillar (HD) and UW-Madison (HD)
  - $\rightarrow$  Models applied for improved dual-fuel RCCI combustion system design.

#### **Accomplishments**

- Work addressed a limiting factor of RCCI combustion, which is high peak pressure rise rate - PPRR limits RCCI load capability.
- Potential break-through 2-zone piston design developed analytically\* addresses PPRR issue while maintaining low emissions and high thermal efficiency.
- Modeling shows that new piston design offers thermal efficiency and emissions advantages for both LD and HD engines
- Preliminary experimental results with new piston promising

#### **Collaborations**

- Successful collaboration between engine consulting company (WERC), engine industry partner (Caterpillar), government laboratory (ORNL) and university (UW-Madison).
   Future Work
- Continue development and testing of new LD and HD combustion systems.

#### \* patent pending

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Slide 20