Non-Rare Earth Magnesium Bumper Beams Project ID: MAT-149 Presenter: Scott Whalen¹ PI: Scott Whalen¹ **Team:** Md. Reza-E-Rabby¹ Scott Taysom¹ Massimo DiCiano² Tim Skszek² ¹Pacific Northwest National Laboratory ²Magna International, Corporate R&D **BATTELLE** PNNL-SA-152750 PNNL is operated by Battelle for the U.S. Department of Energy This presentation does not contain any proprietary, confidential, or otherwise restricted information ## **Overview** ## **Timeline** • Start date: Jan. 2019 • Re-Scope: Jun. 2019 • End date: Mar. 2022 • % complete: 46% # **Budget** - Total project funding - **\$2,000K (\$667K/yr)** - \$1,000K DOE share - \$1,000K Industry share - 50% spent ### **Barriers** - Magnesium (Mg)¹ - Low cost feedstock - Improved alloys for energy absorption - Aluminum (Al)¹ - Improved ductility and fatigue - Recycling of scrap directly into product ### **Partners** - Magna International - Pacific Northwest National Laboratory (PNNL) # **Project Scope** - Project kicked-off in January 2019 - 2 year \$500K Industry / \$500K DOE LightMAT - Objective was to develop ShAPE for a rectangular profile with non-RE Mg - Retain energy absorption properties measured for non-RE Mg round tubing ## Project Augmented and Re-Scoped in June 2019 - 3 year \$1M Industry / \$1M DOE LightMAT - Rectangular Mg profile retained and prioritized later in project - Added scope for Al and prioritize to beginning of project - Objective is to develop ShAPE for recycling Al scrap directly into extrusions ## Relevance ## Challenge - Energy absorption of non-RE Mg is poor - Aluminum scrap recycling is expensive ## Objective - Develop ShAPE for non-circular profiles - Recycle Al scrap directly into extrusions ### Benefits - 30% weight reduction possible for magnesium components compared to aluminum - Energy and cost reduction for scrap + ShAPE route vs. re-melt + extrusion route # **Milestones** | | | | | | | | | | | | | | ateriats consortium | |--|---------|----|----|---------|----|----|--------------------|---------|-----|----------|-------------------------------------|---------|---------------------| | Task Description | FY 2019 | | | FY 2020 | | | | FY 2021 | | | | FY 2022 | | | | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | | Task 1: Extrude AA6063 12mm thin wall tube at high rate Status: Underway | | | | | (| | ude 12m
imum Sh | | | | | | | | Task 2: Extrude AA6063 12mm thin wall tube directly from scrap Status: Underway | | | | | | | • | | | | 63 tubing
edstock | J | | | Task 3: Extrude AA6063 50mm thin wall tube using portal bridge die Status: Not Started | | | | | | | | | • | | ude 50m
al bridge | | | | Task 4: Extrude ZK60 and AA6063 tube with non-circular profile Status: Not Started | | | | | | | | | | | trude no
cular pro | | | | Task 5: Characterize material properties and microstructure Status: Underway | | | | | | | | | mee | ting AST | extrusion
M standa
elongation | ard for | | # **Approach** ### What is ShAPE? - Linear and rotational shear are combined to impart extreme deformation into the material - Scalable method of extruding structural tubing with hollow cross section ## Benefits for Magnesium - Grain refinement and texture alignment eliminates asymmetry in tensile/compressive strength ratio - Improved energy absorption ### Benefit for Aluminum - Breakdown of surface oxides on scrap enables consolidation - Recycling without re-melting # **Approach** ### ShAPE of AA6063-T5 - Extrude billet and scrap into tubing with 12mm OD and 1-2 mm wall thickness - Develop tooling and process parameters - Extrude at maximum machine press velocity - Achieve mechanical properties above ASTM minimum limit - Develop portal die approach for 50 mm round tubing with 1-2 mm wall thickness # ShAPE of ZK60 (not yet started) - Adapt portal die for non-circular profile - Extrude square 50 mm x 50 mm x 1-2 mm # Technical Accomplishments: AA6063 ShAPE Tooling Development Tooling designed by PNNL and fabricated by Magna Fixtures, integration, and processing performed by PNNL # Technical Accomplishments: AA6063 ShAPE Extrusion | | 1 mm wall | 2 mm wall | |------------------------|----------------|----------------| | Extrusion Ratio | 20.6 | 11.8 | | Length | 2.1 m | 1.2 m | | Force | 518 kN | 381 kN | | Temperature | 450 °C | 440 °C | | Speed* | 7.8 meters/min | 4.5 meters/min | | Mass Rate* | 0.76 kg/min | 0.73 kg/min | # Technical Accomplishments: AA6063 Mechanical Properties Classic ductile failure mode unaffected by slight twisting of extrusion # Near T6 Properties with T5 Heat Treatment ^{*} ASTM B221M-13, Standard Specification for Aluminum and Aluminum – Alloy Extruded Bars, Rods, Wires, Profiles, and Tubes (Metric), Table 2 **ASM Handbook, Vol 2b, Properties and Selection of Aluminum Alloys, Typical Mechanical Properties (2011), Table 4-6, pg. 395 # Technical Accomplishments: AA6063 Breakthrough Eliminated ### **Conventional Extrusion** Breakthrough force is typical and dictates the press capacity ### **ShAPE Extrusion** Elimination of breakthrough can greatly reduce press capacity # Technical Accomplishments: AA6063 Tool Effect on Surface Finish ### **Baseline Tool: Twisted with rough surface** ### **Modified Tool*: Straight with smooth surface** # Technical Accomplishments: AA6063 Tool Effect on Process ### **Extrusion Force** # **Motor Torque** ^{*}Specific tooling features not shown due to ongoing intellectual property development # Response to Previous Year Reviewers' Comments | Reviewer Comment | Response | |---|--| | In order to realize reduction in weight with use of Mg alloys, texture engineering of the Mg is needed to meet energy absorption targets | ShAPE is effective at advantageously aligning basal texture in Mg alloy. Energy absorption of ShAPE extruded ZK60 is equivalent to conventionally extruded AA6061-T6 | | The design of the port hole die for extrusion is not
an easy task and the team is not mentioning how
they plan to approach this. The team needs to
approach an extruder or engineering firm who are
experts on this | Magna is undertaking the portal bridge die design and has the required expertise. A commercial portal die design/fabrication firm will be involved as needed to assist Magna in-house tool & die engineering expertise | | It is not clear how the lower cost will be assessed in this project, nor how significant the cost reduction can be | Non-rare earth bearing magnesium alloys, such as ZK60, are over an order of magnitude less expensive than RE bearing WE43 | | The technology is relevant; however, it would be far
more interesting and relevant for automotive if this
was an Al alloy project. | The project has been re-scoped to include aluminum | # Collaboration # Pacific Northwest National Laboratory Scott Whalen Md. Reza-E-Rabby Scott Taysom Joshua Silverstein PM/PI Process development Tooling and die design Materials characterization # Magna International Tim Skszek Aldo Van Gelder Massimo DiCiano Michael Miranda Ketan Choudhari Cangji Shi PM PI Testing and characterization Tooling and die fabrication Extrusion simulation Extrusion simulation ## **Use of Resources** - Utilizing existing infrastructure and knowledge-base associated with ShAPE at PNNL, previously funded by VTO - Project meetings precede scheduled monthly trials to ensure that experimental objectives align with overall project goals - Magna present on site at PNNL during monthly experimental trials where 10-15 extrusions are fabricated - Magna is fabricating all tooling which has greatly accelerated the project # Remaining Challenges and Barriers - Develop process parameters for extruding AA6063-T5 scrap - Surface finish acceptable for product applications - Design and integrate portal bridge die approach with ShAPE # **Proposed Future Research** ### • FY20 - Extrude AA6063-T5 scrap with properties exceeding ASTM standard - Optimize heat treat schedule for ShAPE extruded AA6063 - Design tooling and fixtures for portal bridge die approach ### • FY21 - Refine process for extruding AA6063-T5 scrap - Implement a portal bridge die approach - Extrude AA6063 round tubing with 50mm diameter and <2mm wall thickness - Extrude non-RE magnesium alloy with a square/rectangular cross section # **Summary** - ShAPE tooling and process parameters developed for extruding AA6063-T5 at maximum machine velocity - ShAPE of AA6063-T5 gave near T6 properties with T5 heat treatment ShAPE of AA6063-T5 scrap is next, and offers cost savings compared to typical recycling