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2.5 MW GENERATORS

5 hours storage
Pb-C capacitor (cube with 6.3 m edge)

Pb-C capacitor  50 Wh/liter
Li-ion battery   420 Wh/liter

1 m

50 kWh

Li-ion    Pb-C
capacitor

50 kWh

Cost of Storing Energy is the Important Metric
(Not Energy Density of Storage Media)

Storage system cost per unit of delivered energy over application life

($/kWh/cycle)  or  ($/kWh/year) over total life of the application
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Minimum Storage Costs achieved when:

“Storage System Life” = “Application Need”
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Optimum Grid Storage Will Not Have Highest Energy Density

Active materials
Electrode
Electrolyte

Other costs
Separator
Current collectors
Package
Manufacturing
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INHERENT ADVANTAGES GAINED USING

Storage That Relies on Physical Processes  

• High efficiency

• Long life (highly reversible)

• Good reliability

• Small temperature effects

• End-of-life waste stream

• Generally safe

Gravity           Kinetic Energy     Electric Field        Magnetic Field    Mechanical

Pumped Hydro    Flywheel Capacitor SMES CAES
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INHERENT ADVANTAGES GAINED USING

Storage That Relies on Physical Processes  

Gravity           Kinetic Energy     Electric Field        Magnetic Field    Mechanical

Pumped Hydro    Flywheel Capacitor SMES CAES

No moving parts

Essentially no maintenance
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Capacitors do not Necessarily Discharge Instantly

~1995 ESMA Bus
30 MJ, 190 V Capacitor Bank
15 km range, 15 minute charge

Circle route operation in large Moscow park

2010 Shanghai Bus
100% capacitor power

few km range, 20 s charge
Shanghai bus route #11 
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CAPACITOR STORAGE APPLICATION

TIME SHIFTING—DAY/NIGHT STORAGE

20 years at 1 cycle per day, five days per week requires ~5000 cycles

NO STORAGE WITH STORAGE

24 hours 24 hours
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Capacitor Technology for Bulk Energy Storage

(Lead acid battery at 80% DOD ~$0.30/kWh/cycle)

• Available today! Breakthrough discovers not needed.

• Engineering development and implementation underway  

• Asymmetric electrochemical capacitor design 
• first electrode activated carbon (natural source)-EDLC storage
• second electrode Faradaic or pseudocapacitive storage
• aqueous electrolyte
• polymer package

• Optimized for ~C/5 charge/discharge rate

• Cycle life is controlled by electrode asymmetry ratio

• Typically designed for ~5000 cycles (100% discharge)

• Energy storage cost projections < $0.05/kWh/cycle
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Capacitor Technology for Bulk Energy Storage

• Available today! Breakthrough discovers not needed.

• Engineering development and implementation underway  

• Asymmetric electrochemical capacitor design 
• first electrode activated carbon (natural source)-EDLC storage
• second electrode Faradaic or pseudocapacitive storage
• aqueous electrolyte
• polymer package
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Cyclic Voltammogram of Carbon Electrode
Exceptional Charge Storage at Far Negative Potentials in Aqueous Electrolyte 

Double Layer Capacitor Seminar, Deerfield  Beach, FL, Dec. 6-8, 2004
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Jay Whitacre <jwhitacre@aquionenergy.com>

Aqueous Sodium Ion Asymmetric Energy Storage Device

NaMnO2-Na2SO4-C

1.8 V sealed cell

High efficiency

Optimized for >4 hr charge/discharge rate

~30 Wh/liter

Early stage start-up company

DOE and VC support

Cost goal <$250/kWh

Storage costs @ 5000 cycles <$0.05/kWh
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7 Cell Module (35”L x 7” W x 11”H)

MegaJoule Storage,Inc.MegaJoule Storage,Inc.MegaJoule Storage,Inc.MegaJoule Storage,Inc.
Herbert Crowther, <hcrowther@megajouleinc.com>

PbO2-H2SO4-C

2 V sealed cells

>70% energy efficiency

Optimized for C/5 operation  

~50 Wh/liter

5000 cycle design

Recyclable materials

Natural cell voltage balance claimed

Early stage start-up company

Cost projections <$200/kWh

Storage costs @ 5000 cycles <$0.05/kWh
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Decommissioned Power Plants could be filled with Capacitors

 

• Significant quantities of energy stored

• Transmission switchyards often intact

• Extends life of capital investment

• Promotes removal of inefficient plants

• Permitting should not be difficult

50m x 100m x 20m = 100,000 m3

Pb-C capacitor: 50 Wh/l = 50 kWh/m3

⇒⇒⇒⇒ 100,000 m3 storage volume could
deliver 5,000 MWh of electricity

Note:
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Decommissioned Power Plants could be filled with Capacitors

 

• Significant quantities of energy stored

• Transmission switchyards often intact

• Extends life of capital investment

• Promotes removal of inefficient plants

• Permitting should not be difficult

50m x 100m x 20m = 100,000 m3

Pb-C capacitor: 50 Wh/l = 50 kWh/m3

⇒⇒⇒⇒ 100,000 m3 storage volume could
deliver 5,000 MWh of electricity
i.e. 1000 MW for 5 hours

Note:
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Raccoon Mountain Pumped Hydro Storage Reservoir
305 m height, 528 acres surface, ~30 GWh of stored Energy
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Raccoon Mountain Pumped Hydro Storage Reservoir
305 m height, 528 acres surface, ~30 GWh of stored Energy

(and need no mountain)

A capacitor system storing the same quantity of energy would 

have a volume ~20-times smaller than the water in the reservoir
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Summary:  Capacitors for Power Grid Storage

• ($/kWh/cycle)  or  ($/kWh/year) are the important metrics (not energy density)

• Lowest cost achieved when “Storage System Life” = “Application Need” 

• Optimum grid storage will generally not have the highest energy density

• Storage that relies on physical processes offers notable advantages

• Asymmetric capacitor cycle life is determined by its design (tune precisely) 

• Capacitors can be readily scaled to create small or large grid storage systems

• Capacitor technology has potential storage costs of < $0.05/kWh (5000 cycles)

• Two early-stage US companies mentioned--developing capacitor bulk-storage

• Decommissioned generating plants are candidate locations for capacitor storage
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