

DEPARTMENT OF ENERGY

National Nuclear Security Administration Los Alamos Field Office Los Alamos, New Mexico 87544

APR 2 2 2013

Mr. Carlos Valdez Chair Northern New Mexico Citizen's Advisory Board 94 Cities of Gold Road Santa Fe, New Mexico, 87506

Dear Mr. Valdez:

Subject: Northern New Mexico Citizens Advisory Board Recommendation No. 2013-01

Thank you and the Northern New Mexico Citizens' Advisory Board (NNMCAB) for recommendation No. 2013-01, "Recommendation for Action in Analysis of Disposal Pathways for Disposition of 33 Shafts: Remote-Handled Waste Buried in 33 Shafts at Technical Area 54 (TA-54)". Recommendation No. 2013-01 builds upon an earlier recommendation to Department of Energy (DOE) for the same action (No. 2010-01). Both recommendations seek to provide input on additional technical methods for consideration regarding disposition of below-grade suspect transuranic (TRU) waste at Technical Area (TA)-54.

As you are aware, DOE/National Nuclear Security Administration (NNSA) Los Alamos Field Office reported to the NNMCAB on December 10 2012 on the Schedule for Disposition of Below-Ground TRU Waste. The schedule was submitted to and approved by the New Mexico Environment Department (NMED) in December 2012. Based in part on the original and this emerging recommendation by the NNMCAB, this schedule identified that additional analysis is warranted to evaluate the final disposition of waste emplaced below-grade. Section 321 (a) of the DOE National Environmental Policy Act (NEPA) Implementation Regulations (10 Code of Federal Regulations [CFR] § 1021) states that DOE may prepare an Environmental Assessment on any action at any time in order to assist agency planning and decision-making. DOE/NNSA Los Alamos Field Office is in the process of developing the scope of work and budgeting for this additional NEPA analysis to address below-grade TRU at TA-54.

The environmental analysis would support compliance with the Order on Consent (Consent Order) and would support the Framework Agreement Deliverable submitted to NMED on December 10, 2012. The timeline for completing NEPA (analysis and decision) is no later than September 30, 2015. DOE/NNSA will consider the NNMCAB recommendations on the below grade TRU waste as the NEPA analysis is developed. Additionally, the NNMCAB and members of the public will be invited to participate in the NEPA process.

If you have any additional questions or concerns regarding this response to your recommendation, please do not hesitate to contact me at your earliest convenience.

Juan L. Griego Acting Manager

Enclosure:

NNMCAB Recommendation 2013-01
DOE/NNSA Response to NNMCAB Recommendation 2010-01
NNMCAB Recommendation 2010-01

cc w/enclosure:

Manuel Pacheco

Vice-Chair

Northern New Mexico Citizen's Advisory Board

94 Cities of Gold Road

Santa Fe, New Mexico, 87506

- P. Maggiore, EPO, NA-00-LA
- G. C. Henckel, EPO, NA-00-LA
- D. Nickless, EPO, NA-00-LA
- G. Rael, NSM, NA-00-LA
- K. Oden, NSM, NA-00-LA
- J. Mousseau, ADEP, LANS, MS-M991
- D. Cox, ADEP, LANS, MS-K487

Records Center, NA-00-LA

Official Contract File, NA-00-LA

EPO-32LB-446-502281

February 5, 2013

Mr. Juan Griego Acting Manager Los Alamos Field Office 3747 West Jemez Road, MS A316 Los Alamos, NM 87544

Mr. Pete Maggiore Assistant Manager for Environmental Operations Los Alamos Field Office 3747 West Jemez Road, MS A316 Los Alamos, NM 87544

Dear Messrs. Griego and Maggiore,

I am pleased to enclose Recommendation 2013-01, unanimously adopted by the Northern New Mexico Citizens' Advisory Board at its Jan. 30th meeting in Pojoaque.

Please call Ed Worth, DDFO or Menice Santistevan, Executive Director, if you have questions regarding this recommendation. We look forward to the response from the Department of Energy.

Very truly yours,

Carlos J. Valdez Chair, NNMCAB

Enclosure: a/s Cc w/encl:

U. S. Senator Martin Heinrich U.S. Senator Tom Udall

U. S. Congressman Ben R. Lujan

Secretary F. David Martin, NMED Melissa Nielson, DOE-HQ (via e-mail)

Cate Alexander, DFO (via e-mail)

Ed Worth, DDFO

Robert Pfaff, LASO/EPO

John Kieling, NMED

Rich Mayer, EPA

Jeffrey Mousseau, LANS

Dean Hammons, USACE (via e-mail)

Menice B. Santistevan, Executive Director

CAB File

Northern New Mexico Citizens' Advisory Board A U.S. Department of Energy Site-Specific Advisory Board 94 Cities of Gold Road, Santa Fe, NM 87506 Phone: 505.989.1662 or 1.800.218.5942

Fax: 505.989.1752 www.nnmcab.energy.gov

NORTHERN NEW MEXICO CITIZENS' ADVISORY BOARD (NNMCAB) Recommendation to the Department of Energy No. 2013-01

Recommendation for Action in Analysis of Disposal Pathways for Disposition of 33 Shafts:

Remote-Handled Waste Buried in 33 Shafts at Technical Area 54 (TA-54)

Background

NNMCAB Recommendation 2010-01 of Jan. 27, 2010 received a response from NNSA's Los Alamos Site Office stating, "...These recommendations from the NNMCAB will assist us in determining the proper path forward. While a number of the recommendations address issues or questions that are necessary to perform this project, LASO is not able to provide a response at this time. The contractor and LASO project team continue to work with other DOE Sites (Hanford, Carlsbad Field Office, etc.) to evaluate technologies and approaches in executing this work. ...".

Discussion

To date, the NNMCAB has learned of no activity toward evaluating technologies and approaches which would enable the execution of the work of disposing of materials within the 33 shafts. In the three years passed since the recommendation was made, the NNMCAB believes that collaboration with other DOE sites has had time to occur to inform and enable a current evaluation of the best technologies and approaches for disposition of the 33 shafts.

Recommendation

The NNMCAB respectfully requests that DOE respond in a timely manner to the recommendations made in Recommendation No. 2010-01 on Jan 27, 2010 providing analysis of suggested methods (Nos. 1-6), a discussion of viability, and possible alternatives to those suggestions. The NNMCAB intends to provide DOE with information on additional technical methods for its consideration in a subsequent recommendation.

Intent

The intent of this Recommendation 2013-01 remains the same as 2010-01, namely to discourage inaction in addressing the permanent disposition of the 33 shafts.

Effect

The effect of implementing this recommendation is to foster the engagement of DOE/NNSA/LANS with the EPA, State of New Mexico, and associated Pueblos in arriving at an approach to permanent disposition of the 33 shafts which will resolve real and perceived risks to the satisfaction of the public.

ATTACHMENT

NORTHERN NEW MEXICO CITIZENS' ADVISORY BOARD (NNMCAB) Waste Management Committee Recommendation to the Department of Energy No. 2010-01

Recommendation for Disposition of Remote-handled Waste Buried in 33 Shafts at Technical Area 54 (TA-54)

Background

The Consent Order between the State of New Mexico, the Department of Energy/National Nuclear Safety Administration (DOE/NNSA) and Los Alamos National Security (LANS) requires that TA-54 Material Disposal Area G (MDA-G) corrective actions be completed by October, 2015. This means that the Remote-Handled Transuranic (RH-TRU) waste must be retrieved from MDA-G, preferably by the summer of 2011, to provide adequate time for retrieval, processing, characterizing, certifying, and packaging for shipment to the Waste Isolation Pilot Plant (WIPP) that is designed to handle and dispose of RH-waste. The RH-TRU Waste Retrieval and Disposition program is part of the TA-54 Closure Project scheduled to complete remaining Area G corrective actions before October 2015. The RH-TRU Waste Retrieval and Disposition Project is a major part of the overall LANL Legacy Waste Disposition Program, which is to result in closure of TA-54 and is one of the highest priorities within the DOE Environmental Management (EM) program and is consistent with the DOE Strategic Plan to accelerate cleanup of weapons sites.

The cleanup of MDA-G has been previously considered as one of the three top priority remediation sites by the NNMCAB in Draft Recommendation 2009-05.

Typical waste materials and waste material parameters are summarized below.

- 1. There are 193 packages of waste (27 m 3) in 1-2 ft. diam. metal pipes buried in 33 shafts (#200-232) that are 13 to 20 ft. length. The wastes in the metal pipes were generated and emplaced at different times (1970 to 1995) and in different configurations. RH wastes are defined as having surface doses >200 milliroentgen/hr (mR/hr) @ contact. (Wastes <200 mR/hr are considered to be Contact Handled waste.)
- 2. Nineteen of 33 shafts has waste that is >1000 R/hr contact but only 10 shafts have radiation levels > 100 R/hr @ 1 meter.
- 3. The principal beta-gamma activities are from Mixed Fission Products (MFP):

Cs-137 30.1 yr half-life 662 kev gamma-ray

Sr-90 28.2 yr half-life Pure beta-emitter

Eu fission product activity is low level

Combined MFP radioactivity is ~2000 Ci (corrected to 2009)

- 4. There is ~1.54 Kg of Pu with ~128 Ci of alpha-activity with Am-241.
- 5. According to the current governing document CCP-TP-500 Revision 8 (7-24-08), the waste must be examined item-by-item for prohibited items and for characterization of Waste Material Parameters. (There may be negotiation or exception to this requirement but it may take an unacceptable length of time)
- **6.** Shaft #212 contains the core of the Los Alamos Molten Pu Reactor Experiment (LAMPRE I) that reportedly contains 200 gm of Pu and weighs over 7200 Kg. There may be residual Na coolant in the concreted core.
- 7. There is a final radiation limit of 1000 R/hr per packaged drum prepared for shipment to the WIPP.

8. Typical waste items in the 33 shafts are highly radioactive materials contaminated with irradiated fuel claddings, grindings, metallurgical fuel sample mounts, stainless steel, and fuel cut remains. There are no gross fuel pin samples in the waste.

Discussion

Disposition of the wastes from the 33 shafts is very complex and requires a diversity of facilities, technical expertise, regulatory protocols, administrative policies, environmental concerns, industrial and radiation safety practices, and collaborative approaches that must come together to achieve success. There are a large number of disciplines that are necessary to provide solutions to the challenges of this undertaking, particularly, personnel capable of making shielding calculations, exposure calculations, trained hot cell operators, trained radio-chemists, experienced EM and mechanical engineers, safety-based scientists and technicians, radiation protection and control workers trained to handle highly radioactive materials, etc. If expertise in these areas is lacking, DOE/NNSA, and LANL must recognize that they must provide appropriate technical training for key personnel to address these type of challenging initiatives. Without adequately trained personnel, working in a collaborative manner, the cost of this and other challenging EM projects will be ineffective and inefficient and cost the taxpayer an unreasonable amount of money while yielding unsatisfactory results. This project could be handled as a model that could be implemented on a national basis.

Comment

To comply with the 2015 time limit established by the Consent Order, at least six methodologies have been considered and are briefly summarized below. In order to select the most appropriate methodology, the NNMCAB recommends that DOE/LANL complete and implement the Sampling and Analyses Plan that was previously drafted before any of the listed methodologies are initiated. (Note that the methodologies are categorized as "ideal" or "non-ideal" depending on how extensive deviations, exceptions, or modifications to already approved agreements and standard practices must be made. Also, in how readily the methodologies are accepted by the Pueblo Tribes, environmental, and citizen groups.)

No. 1—(Ideal Method) Retrieve the 3 types of waste pipes in order from the 33 shafts and conduct item-by-item characterization (or whatever is currently acceptable) in the Chemical and Metallurgical Research (CMR) hot cells according to CCP-TP-500 and package and send to the WIPP. There are no deviations, exclusions, or modifications.

No. 2—(Alternative-ideal Method) Retrieve the wastes from the 33 shafts according to method of emplacement so that those pipes that can be directly inserted into the CMR Hot Cells for an item-by-item characterization. The pipes from the remaining shafts could be retrieved into a mobile or portable hot cell system built at TA-54 for handling the larger diameter concreted pipes. A modified characterization can be conducted that is less extensive within the portable hot cells at TA-54 if this approval is achievable. This will require a deviation or exclusion from CCP-TP-500 and new agreement with the Environmental Protection Agency (EPA), New Mexico Environmental Department (NMED), and other pertinent agencies. (Alternatively, the concrete from the pipes could be cut away or otherwise removed from within transportable hot cells at TA-54. The cleaned pipes could then be transferred to the CMR Hot Cells for total characterization of the wastes. Treatment and characterization of a specific waste form such as the LAMPRE I in Shaft 212 could be completed in the CMR Hot Cells. Recognize that greater reliance on the portable hot cells will necessarily call for greater compliance with regulations for non-reactor nuclear facilities as stipulated in DOE Order 420.1, Facility Safety.

No. 3—(Non-ideal Method) Conduct In-Vitro Solidification on each of the 33 shafts and allow molten material to cool for 2 years and monitor the effectiveness of this methodology for an agreed time frame into the future. This will require new reviews and agreements with all pertinent parties.

- **No. 4**—(Non-ideal Method) Leave the wastes in place and monitor the entire waste field in accordance with a long term legacy waste management program. Future actions will be as determined by new agreements with all pertinent agencies including the affected Pueblos.
- **No. 5**—(Limited ideal Method) Retrieve the wastes from the 33 shafts and move to another location or site for storage and characterization at a later date.
- **No. 6—**(Combined Form) A modified or combined form of Method 1 through 5 or some other innovative methodology depending on availability of hot cells, technologies, RH-waste capabilities and time frame to implement. This form will require extensive new agreements.

Observations and Descriptive Comments

- The selection of a means to comply with the Consent Order without modification can be accomplished with budget estimates that can range from \$50M to \$200M for the first two Methods outlined above.
- Conducting the work with a modified Consent Order and/or modified characterization plan might be less costly and can still result in the removal of wastes from TA-54 and transferal to the WIPP.
- What may seem like a quick fix (Methodology No. 4) may outwardly seem attractive but would require consideration of input and consequences from a variety of agencies and the most affected Tribes and could result in endless mistrust from environmental and citizen groups in northern New Mexico. These negotiations could extend beyond the year 2015. Also, should a future monitoring system indicate a radioactive leak, the cost of remediation could be unacceptable.
- The San Ildefonso Tribe considers the land around TA-54 to be sacred and they have said that "ideally" they would prefer to have the waste removed rather than pass this unwanted waste on to future generations. However, they are cognizant of certain cost/risk/benefit analyses and limitations that have to be considered.
- In time, DOE/NNSA and/or LANL may maintain that they no longer have the technical capability to effectively comply with the Consent Order.
- Although this is considered to be a DOE-EM problem, the NNSA must recognize that the 33 Shafts waste is NNSA derived waste and they too have a responsibility to help reduce the risks inherent in these type wastes and cooperate with available RH waste facilities, technologies, and expertise and in sharing the expense associated with this special, indeed unique, waste problem.

Recommendations

Note: The 33 Shafts project is highly complex and requires cooperation between many agencies, organizations, and disciplines. EM must establish a needs breakdown structure and assign responsibilities and roles required to accomplish this project in a unified manner.

- No. 1—Complete and implement the Sampling and Analysis Plan to determine the integrity of the inner and outer pipe wall by sampling the inner-outer annulus fill material.
- No. 2—Assure sufficient funding is available for completion of the project within time limitations and all safety requirements.
- No. 3—Assure the necessary technology, trained expertise, and infrastructure is available to implement any selected methodology.
- No. 4—Based on the results of implementation of Recommendations No. I, 2, and 3, select an "ideal" or "non-ideal" methodology for disposition of the waste.
- No. 5—Determine the non-acceptability/acceptability of time delays required for seeking and obtaining deviations, exceptions, and/or modifications from pertinent agencies for less extensive and more reasonable characterization and handling methodologies for highly radioactive RH-mixed wastes that have been "stable" for 20 to 30 years. Acceptance of more reasonable methodologies will result in great reductions in time, effort, expense, and radiation exposure to workers.

Intent

The intent of this recommendation is to remove the highly radioactive RH-TRU wastes from TA-54 in a safe manner with a minimum of radiation exposure to workers at all levels. Accomplishing this will result

in a successful closure of the site. If the "ideal" methodology is not feasible, then a secondary or "non-ideal" methodology should be considered. Equally important, this recommendation is to discourage inaction to result in a final "no action" decision/non-decision for the disposition of the 33 shafts.

Effect

The effect of implementing this recommendation is to help maintain public confidence in the ability of DOE/NNSA/LANS in collaboration with the EPA, State of New Mexico, and associated Pueblos to effect a complex but dynamic approach to disposition the RH waste in the 33 shafts at TA-54 leading to eventual closure of MDA-G.

DEPARTMENT OF ENERGY

National Nuclear Security Administration Los Alamos Site Office Los Alamos, New Mexico 87544

JUL 2 2 2010

Mr. Ralph L. Phelps Chairman Northern New Mexico Citizens Advisory Board 1660 Old Pecos Trail, Suite B Santa Fe, New Mexico 87505

Dear Mr. Phelps:

Reference:

1.) Contract Number DE-AC52-06NA25396, Los Alamos National Security, LLC and the Department of Energy, National Nuclear Security Administration

Subject:

Response to Northern New Mexico Citizens Advisory Board Recommendation

2010-01

The Department of Energy's (DOE) Los Alamos Site Office (LASO) has reviewed the Northern New Mexico Citizens' Advisory Board (NNMCAB) recommendation 2010-01. LASO's response to the recommendation is provided in the enclosure.

If you have any questions or concerns, you may contact M. L. Bishop at (505) 606-1804 or Ed Worth at (505) 606-0398.

Sincerely,

George J. Rael

Manager

Environmental Operations

Enclosure

cc: w/enclosure
M.L. Bishop, LASO
E. Worth, LASO
M. Graham, LANS
Records Center, LASO
Official Contract File, LASO

EPO:15LB-120-266169

ATTACHMENT

Recommendation No. 2010-01

By the Waste Management Committee

Recommendation for Disposition of Remote-handled Waste Buried in 33 Shafts at Technical Area 54 (TA-54)

Recommendations

Note: The 33 Shafts project is highly complex and requires cooperation between many agencies, organizations, and disciplines. EM must establish a needs breakdown structure and assign responsibilities and roles required to accomplish this project in a unified manner.

No. 1—Complete and implement the Sampling and Analysis Plan to determine the integrity of the inner and outer pipe wall by sampling the inner-outer annulus fill material.

No. 2—Assure sufficient funding is available for completion of the project within time limitations and all safety requirements.

No. 3—Assure the necessary technology, trained expertise, and infrastructure is available to implement any selected methodology.

No. 4—Based on the results of implementation of Recommendations No. 1, 2, and 3, select an "ideal" or "non-ideal" methodology for disposition of the waste.

No. 5—Determine the non-acceptability/acceptability of time delays required for seeking and obtaining deviations, exceptions, and/or modifications from pertinent agencies for less extensive and more reasonable characterization and handling methodologies for highly radioactive RH-mixed wastes that have been "stable" for 20 to 30 years. Acceptance of more reasonable methodologies will result in great reductions in time, effort, expense, and radiation exposure to workers.

Response

Los Alamos Site Office agrees that this complex problem requires extensive cooperation and completion in a unified manner. These recommendations from the NNMCAB will assist us in determining the proper path forward.

While a number of the recommendations address issues or questions that are necessary to perform this project, LASO is not able to provide a response at this time.

The contractor and LASO project team continue to work with other DOE Sites (Hanford, Carlsbad Field Office, etc.) to evaluate technologies and approaches in executing this work. The 33 shafts is one of our most challenging projects and worker safety is very important due to the Remote Handling Component.

LASO wishes to especially thank the NNMCAB for the extensive research and historical data included in the recommendation. LASO believes this information will be very helpful as DOE evaluates options for a path forward.

NORTHERN NEW MEXICO CITIZENS' ADVISORY BOARD (NNMCAB) Waste Management Committee

Recommendation to the Department of Energy No. 2010-01

Recommendation for Disposition of Remote-handled Waste Buried in 33 Shafts at Technical Area 54 (TA-54)

Background

The Consent Order between the State of New Mexico, the Department of Energy/National Nuclear Safety Administration (DOE/NNSA) and Los Alamos National Security (LANS) requires that TA-54 Material Disposal Area G (MDA-G) corrective actions be completed by October, 2015. This means that the Remote-Handled Transuranic (RH-TRU) waste must be retrieved from MDA-G, preferably by the summer of 2011, to provide adequate time for retrieval, processing, characterizing, certifying, and packaging for shipment to the Waste Isolation Pilot Plant (WIPP) that is designed to handle and dispose of RH-waste. The RH-TRU Waste Retrieval and Disposition program is part of the TA-54 Closure Project scheduled to complete remaining Area G corrective actions before October 2015. The RH-TRU Waste Retrieval and Disposition Project is a major part of the overall LANL Legacy Waste Disposition Program, which is to result in closure of TA-54 and is one of the highest priorities within the DOE Environmental Management (EM) program and is consistent with the DOE Strategic Plan to accelerate cleanup of weapons sites.

The cleanup of MDA-G has been previously considered as one of the three top priority remediation sites by the NNMCAB in Draft Recommendation 2009-05.

Typical waste materials and waste material parameters are summarized below.

- 1. There are 193 packages of waste (~27 m³) in 1-2 ft. diam. metal pipes buried in 33 shafts (#200-232) that are 13 to 20 ft. length. The wastes in the metal pipes were generated and emplaced at different times (1970 to 1995) and in different configurations. RH wastes are defined as having surface doses >200 milliroentgen/hr (mR/hr) @ contact. (Wastes <200 mR/hr are considered to be Contact Handled waste.)
- 2. Nineteen of 33 shafts has waste that is >1000 R/hr contact but only 10 shafts have radiation levels > 100 R/hr @ 1 meter.
- 3. The principal beta-gamma activities are from Mixed Fission Products (MFP):

Cs-137 30.1 yr half-life 662 kev gamma-ray

Sr-90 28.2 yr half-life Pure beta-emitter

Eu fission product activity is low level

Combined MFP radioactivity is ~2000 Ci (corrected to 2009)

- 4. There is ~1.54 Kg of Pu with ~128 Ci of alpha-activity with Am-241.
- 5. According to the current governing document CCP-TP-500 Revision 8 (7-24-08), the waste must be examined item-by-item for prohibited items and for characterization of Waste Material Parameters. (There may be negotiation or exception to this requirement but it may take an unacceptable length of time)
- 6. Shaft #212 contains the core of the Los Alamos Molten Pu Reactor Experiment (LAMPRE I) that reportedly contains 200 gm of Pu and weighs over 7200 Kg. There may be residual Na coolant in the concreted core.

- 7. There is a final radiation limit of 1000 R/hr per packaged drum prepared for shipment to the WIPP.
- **8.** Typical waste items in the 33 shafts are highly radioactive materials contaminated with irradiated fuel claddings, grindings, metallurgical fuel sample mounts, stainless steel and fuel cut remains. There are no gross fuel pin samples in the waste.

Discussion

Disposition of the wastes from the 33 shafts is very complex and requires a diversity of facilities, technical expertise, regulatory protocols, administrative policies, environmental concerns, industrial and radiation safety practices, and collaborative approaches that must come together to achieve success. There are a large number of disciplines that are necessary to provide solutions to the challenges of this undertaking, particularly, personnel capable of making shielding calculations, exposure calculations, trained hot cell operators, trained radio-chemists, experienced EM and mechanical engineers, safety-based scientists and technicians, radiation protection and control workers trained to handle highly radioactive materials, etc. If expertise in these areas is lacking, DOE/NNSA, and LANL must recognize that they must provide appropriate technical training for key personnel to address these type of challenging initiatives. Without adequately trained personnel, working in a collaborative manner, the cost of this and other challenging EM projects will be ineffective and inefficient and cost the taxpayer an unreasonable amount of money while yielding unsatisfactory results. This project could be handled as a model that could be implemented on a national basis.

Comment

To comply with the 2015 time limit established by the Consent Order, at least six methodologies have been considered and are briefly summarized below. In order to select the most appropriate methodology, the NNMCAB recommends that DOE/LANL complete and implement the Sampling and Analyses Plan that was previously drafted before any of the listed methodologies are initiated.

(Note that the methodologies are categorized as "ideal" or "non-ideal" depending on how extensive deviations, exceptions, or modifications to already approved agreements and standard practices must be made. Also, in how readily the methodologies are accepted by the Pueblo Tribes, environmental, and citizen groups.)

No. 1—(Ideal Method) Retrieve the 3 types of waste pipes in order from the 33 shafts and conduct item-by-item characterization (or whatever is currently acceptable) in the Chemical and Metallurgical Research (CMR) hot cells according to CCP-TP-500 and package and send to the WIPP. There are no deviations, exclusions, or modifications.

No. 2—(Alternative-ideal Method) Retrieve the wastes from the 33 shafts according to method of emplacement so that those pipes that can be directly inserted into the CMR Hot Cells for an item-by-item characterization. The pipes from the remaining shafts could be retrieved into a mobile or portable hot cell system built at TA-54 for handling the larger diameter concreted pipes. A modified characterization can be conducted that is less extensive within the portable hot cells at TA-54 if this approval is achievable. This will require a deviation or exclusion from

CCP-TP-500 and new agreement with the Environmental Protection Agency (EPA), New Mexico Environmental Department (NMED), and other pertinent agencies. (Alternatively, the concrete from the pipes could be cut away or otherwise removed from within transportable hot cells at TA-54. The cleaned pipes could then be transferred to the CMR Hot Cells for total characterization of the wastes. Treatment and characterization of a specific waste form such as the LAMPRE I in Shaft 212 could be completed in the CMR Hot Cells. Recognize that greater reliance on the portable hot cells will necessarily call for greater compliance with regulations for non-reactor nuclear facilities as stipulated in DOE Order 420.1, Facility Safety.

No. 3—(Non-ideal Method) Conduct In-Vitro Solidification on each of the 33 shafts and allow molten material to cool for 2 years and monitor the effectiveness of this methodology for an agreed time frame into the future. This will require new reviews and agreements with all pertinent parties.

No. 4—(Non-ideal Method) Leave the wastes in place and monitor the entire waste field in accordance with a long term legacy waste management program. Future actions will be as determined by new agreements with all pertinent agencies including the affected Pueblos.

No. 5—(Limited ideal Method) Retrieve the wastes from the 33 shafts and move to another location or site for storage and characterization at a later date.

No. 6—(Combined Form) A modified or combined form of Method 1 through 5 or some other innovative methodology depending on availability of hot cells, technologies, RH-waste capabilities and time frame to implement. This form will require extensive new agreements.

Observations and Descriptive Comments

- The selection of a means to comply with the Consent Order without modification can be accomplished with budget estimates that can range from \$50M to \$200M for the first two Methods outlined above.
- Conducting the work with a modified Consent Order and/or modified characterization plan might be less costly and can still result in the removal of wastes from TA-54 and transferal to the WIPP.
- What may seem like a quick fix (Methodology No. 4) may outwardly seem attractive but
 would require consideration of input and consequences from a variety of agencies and the
 most affected Tribes and could result in endless mistrust from environmental and citizen
 groups in northern New Mexico. These negotiations could extend beyond the year 2015.
 Also, should a future monitoring system indicate a radioactive leak, the cost of
 remediation could be unacceptable.
- The San Ildefonso Tribe considers the land around TA-54 to be sacred and they have said that "ideally" they would prefer to have the waste removed rather than pass this unwanted waste on to future generations. However, they are cognizant of certain cost/risk/benefit analyses and limitations that have to be considered.
- In time, DOE/NNSA and/or LANL may maintain that they no longer have the technical capability to effectively comply with the Consent Order.

 Although this is considered to be a DOE-EM problem, the NNSA must recognize that the 33 Shafts waste is NNSA derived waste and they too have a responsibility to help reduce the risks inherent in these type wastes and cooperate with available RH waste facilities, technologies, and expertise and in sharing the expense associated with this special, indeed unique, waste problem.

Recommendations

Note: The 33 Shafts project is highly complex and requires cooperation between many agencies, organizations, and disciplines. EM must establish a needs breakdown structure and assign responsibilities and roles required to accomplish this project in a unified manner.

No. 1—Complete and implement the Sampling and Analysis Plan to determine the integrity of the inner and outer pipe wall by sampling the inner-outer annulus fill material.

No. 2—Assure sufficient funding is available for completion of the project within time limitations and all safety requirements.

No. 3—Assure the necessary technology, trained expertise, and infrastructure is available to implement any selected methodology.

No. 4—Based on the results of implementation of Recommendations No. 1, 2, and 3, select an "ideal" or "non-ideal" methodology for disposition of the waste.

No. 5—Determine the non-acceptability/acceptability of time delays required for seeking and obtaining deviations, exceptions, and/or modifications from pertinent agencies for less extensive and more reasonable characterization and handling methodologies for highly radioactive RH-mixed wastes that have been "stable" for 20 to 30 years. Acceptance of more reasonable methodologies will result in great reductions in time, effort, expense, and radiation exposure to workers.

Intent

The intent of this recommendation is to remove the highly radioactive RH-TRU wastes from TA-54 in a safe manner with a minimum of radiation exposure to workers at all levels. Accomplishing this will result in a successful closure of the site. If the "ideal" methodology is not feasible, then a secondary or "non-ideal" methodology should be considered. Equally important, this recommendation is to discourage inaction to result in a final "no action" decision/non-decision for the disposition of the 33 shafts.

Effect

The effect of implementing this recommendation is to help maintain public confidence in the ability of DOE/NNSA/LANS in collaboration with the EPA, State of New Mexico, and associated Pueblos to effect a complex but dynamic approach to disposition the RH waste in the 33 shafts at TA-54 leading to eventual closure of MDA-G.