

Certificate of Analysis Certified Reference Material C122 Plutonium Oxide (PuO₂) Plutonium Assay and Isotopic Standard in Powder Form

Plutonium	
	$(877.90 \pm 0.39 \text{ g}\cdot\text{kg}^{-1})$
Plutonium-238	0.0521 ± 0.0011 At. %*
Plutonium-239	
Plutonium-240	11.539 \pm 0.004 At. %*
Plutonium-241	0.9248 ± 0.0011 At. %*
Plutonium-242	0.1790 ± 0.0013 At. %*
Relative Atomic Weight	

*As of January 1, 1985. Refer to Table I for Quarterly Decay-Adjusted Values.

This Certified Reference Material (CRM) is an assay and isotopic standard primarily for use in the analysis of plutonium materials in process intermediate or finished product forms. Each unit of C122 consists of plutonium oxide (PuO₂) powder, nominally 1 gram, contained in a 1-dram (5-mL) glass vial.

NOTE-the vial and its outer plastic containment should be handled under proper radiologically-controlled conditions at all times.

The statistical uncertainty assigned to each certified value is the individual 95% confidence interval for the mean of the respective assay and isotopic measurements. The uncertainty assigned to the assay value is derived from random measurement variations; the uncertainties assigned to the isotopic measurements additionally take into account the uncertainty on each mass discrimination correction extrapolated from the mean of the ²³⁹Pu/²⁴⁰Pu ratios of NBS SRMs 946 and 948.

Preparation and packaging of C122 were carried out by the Los Alamos National Laboratory, under the direction of the CHM-1 Group headed by G. R. Waterbury. For certification, sample dissolutions and assay measurements were performed by M. I. Spaletto, NBL; isotopic measurements were performed by D. W. Crawford, NBL. Characterization studies and impurity measurements were performed by CHM-1, Los Alamos. Technical assistance was provided by J. E. Rein and J. W. Dahlby, Los Alamos and C. G. Cacic, NBL. Statistical assessment of the data for certification was performed by J. T. Bracey and M. D. Soriano, NBL. Overall direction and coordination of the preparation, certification and issuance of this CRM were provided by N. M. Trahey, NBL.

(Revision of Certificate Dated February 1990) Peter Mason, Director December 2020 The PuO₂ material, prepared by calcination at 1250°C to obtain a stable near-stoichiometric product, was packaged prior to characterization and certification. CRM units were selected according to a statistical sampling plan, heated to constant weight at 120°C, then dissolved in separate acid mixtures, subsampled and purified for plutonium assay and isotopic analyses.^{1,2,3} The plutonium content of each subsample was determined by the NBL coulometric method verified with NBS SRM 949f; plutonium isotopic composition for masses 238-242 was determined by thermal ionization mass spectrometry verified with NBS SRMs 946 and 948.⁴ All other isotopes were determined to be at or below a detection limit of 0.0005 At. %. Metallic impurity content (excluding ²⁴¹Am and uranium) was determined by emission spectrography and spectrophotometry and is estimated to be 524 µg/g PuO₂ Uranium was determined by isotope dilution mass spectrometry and is estimated to be 231 µg/g PuO₂, as of January 1, 1985, with a calculated ingrowth of 41 µg/g PuO₂ per year; ²⁴¹Am was determined by radiochemistry and is estimated to be 2719 µg/g PuO₂ as of January 1, 1985, with a calculated ingrowth of 472 µg/g PuO₂ per year. *NOTE - Due to the levels of fixed and ingrowing impurities in C122, the material must be purified prior to use*.

C122 had a radioactivity of 3.44×10^{10} Bq (0.930 Ci) per unit as of January 1, 1985, which is dominated by ²⁴¹Pu.

Table I provides the decay-adjusted values for the certified assay content and isotopic composition of C122 at quarterly intervals for a five-year period. The half-life values (in years) used for the decay calculations are as follows: 238 Pu - 87.74; 239 Pu - 24,119; 240 Pu - 6,562; 241 Pu - 14.35; 242 Pu - 376,000.

C122 Quarterly Decay-Adjusted Certified Values
(Assay in Wt. %; Isotopic Composition in At. %)

Date	<u>Plutonium</u>	²³⁸ Pu	Isotopic Comj ²³⁹ Pu	²⁴⁰ Pu	241 Pu	²⁴² Pu	RAW	
January 1, 1990	87.596	0.0502	87.484	11.558	0.7279	0.1794	239.188	
April 1, 1990	87.588	0.0501	87.492	11.559	0.7194	0.1794	239.187	
July 1, 1990	87.579	0.0500	87.500	11.560	0.7108	0.1794	239.187	
October 1, 1990	87.571	0.0499	87.508	11.561	0.7023	0.1794	239.187	
January 1, 1991	87.562	0.0499	87.515	11.562	0.6939	0.1795	239.187	
April 1, 1991	87.554	0.0498	87.523	11.562	0.6857	0.1795	239.187	
July 1, 1991	87.546	0.0497	87.530	11.563	0.6776	0.1795	239.186	
October 1, 1991	87.538	0.0496	87.538	11.564	0.6695	0.1795	239.186	
January 1, 1992	87.530	0.0495	87.545	11.565	0.6614	0.1795	239.186	
April 1, 1992	87.522	0.0494	87.552	11.565	0.6536	0.1795	239.186	
July 1, 1992	87.514	0.0493	87.559	11.566	0.6458	0.1795	239.186	
October 1, 1992	87.506	0.0492	87.566	11.567	0.6381	0.1796	239.186	
January 1, 1993	87.499	0.0491	87.573	11.567	0.6304	0.1796	239.186	
April 1, 1993	87.491	0.0490	87.580	11.568	0.6230	0.1796	239.185	
July 1, 1993	87.484	0.0489	87.587	11.569	0.6156	0.1796	239.185	
October 1, 1993	87.476	0.0488	87.594	11.569	0.6082	0.1796	239.185	
January 1, 1994	87.469	0.0487	87.601	11.570	0.6009	0.1796	239.185	
April 1, 1994	87.462	0.0486	87.607	11.571	0.5938	0.1797	239.185	
July 1, 1994	87.455	0.0486	87.614	11.571	0.5868	0.1797	239.185	
October 1, 1994	87.447	0.0485	87.620	11.572	0.5797	0.1797	239.185	
95% Confidence Interval (expressed as% of value):								
	±0.045	±2.0	± 0.005	±0.031	±0.11	±0.74		

TABLE I

RECOMMENDED PROCEDURE FOR USING C122

Each CRM package unit contains 1 ± 0.05 g of PuO₂ powder and is intended *only* to store the material until use. For valid application of the CRM, this recommended procedure or an equivalent, must be followed.

Empty the vial unit contents into a Pt crucible, previously preheated to constant weight at 120°C. Proceed to dry the crucible and its contents at 120°C until a constant weight is achieved. (An initial 2-hr drying period followed by two successive 1-hr drying periods should be sufficient.) Transfer the dried PuO₂ to a Teflon beaker and reweigh the crucible in order to calculate the final sample weight. Add ~100 mL of 16 <u>M</u> HNO₃ - 0.05 <u>M</u> HF or 11 <u>M</u> HCl-0.1 <u>M</u> HF to the beaker and apply heat. Continue heating *in air* and replenish the acid mixture as necessary until the sample is dissolved. Cool the solution, quantitatively transfer to a preweighed bottle equipped with cap, and adjust the volume to the desired concentration. Cap the bottle tightly, vigorously shake to homogenize contents, and weigh. Distribute all the solution, as individually weighed portions, into suitable containers and purify each portion before use.

⁴NBL Procedures Manual (Internal Document).

¹Spaletto, I., Cacic, C., and Crawford D., Annual Progress Report, NBL-311, October 1982-September 1983, pp. 14-15. ²Waterbury, G., Private Communication, November 12, 1980.

³Swinburn, K., and McGowan, f., "An Approach to the Use of Plutonium Dioxide as a Chemical Reference Standard for Plutonium," BNFL Report 205(W).