National Nuclear Security Administration

R&D finalists

September 25, 2015

You are here

R&D Magazine named 18 NNSA lab projects as finalists for the 53rd annual R&D 100 Awards, which honor the 100 most innovative technologies and services of the past year.

Finalists were selected by an independent panel of more than 70 judges. This year’s Finalists represent many of industry’s leading organizations and national laboratories, as well as many newcomers to the R&D 100 Awards, often referred to as the “Oscars of Invention.”

This year’s winners will be presented with their honors at the annual black-tie awards dinner in November in Las Vegas.

Among the finalists were:

Lawrence Livermore National Laboratory
Harsh Environment Tag (HET) SystemThis technology for first responders is ideally suited for time-sensitive and real-time inventory or personnel tracking in harsh radio frequency signal environments. The entry is a finalist in four categories -- process/prototyping, software/services, market disruptor product and corporate social responsibility. This technology is being developed in collaboration with Pleasanton-based Dirac Solutions Inc.
Microelectromechanical Systems (MEMS)-based Adaptive-Optics Confocal Microscope

Using the latest advances in adaptive optics and MEMS, this technology revolutionizes deep tissue imaging, providing unprecedented in vivo optical images at the molecular level. The technology is a finalist is two categories -- analytical test and market disruptor product. The work has been performed in conjunction with the University of California, Santa Cruz and Cambridge, Massachusetts-based Boston Micromachines Corp.

Zero-order Reaction Kinetics (Zero-RK)

This software package is an innovative computational method that speeds up simulations of chemical systems by 1,000-fold over methods traditionally used for internal combustion engine research. The entry is a finalist in the software/services category.

Large-Area Projection Micro-Stereolithography

A three-dimensional printing instrument, the device can fabricate products of substantial size yet contain highly detailed features in contrast to other 3D printing techniques that generally have to sacrifice overall product size to achieve small features. It is a finalist in the process/prototyping category.

Dilation X-ray Imager

This imager is the world's fastest two-dimensional X-ray framing camera with 10-fold better temporal resolution than existing cameras. It can survive in environments with 10 times higher neutron backgrounds compared to conventional X-ray cameras. The technology is a finalist in the market disruptor product category.  LLNL researchers collaborated on this effort with two companies, San Diego-based General Atomics and Kentech Instruments Ltd. of Great Britain.

High-Power Intelligent Laser Diode System

This laser system employs advances in laser diodes and electrical drivers to achieve two-to-three-fold improvements in peak output power and intensity over existing technology, in a 10 times more compact form that can scale to even larger arrays and power levels. The technology is a finalist in the information technology/electrical category. LLNL collaborated on the laser system with Lasertel of Tucson, Arizona.

  Los Alamos National Laboratory
 LARS LARS is a small-scale radiography device that, for the first time, can provide continuous high-speed x-ray imaging of spontaneous dynamic events, such as explosions, reaction-front propagation and material failure. To image these types of events, scientists require the use of some type of penetrating radiography, which LARS provides. Laura Smilowitz, of the Laboratory’s Physical Chemistry and Applied Spectroscopy group, and her team and collaborators at CoRELabs developed this technology.
 PipeLIBS Throughout the world, oil, gas, and petrochemical plants often use vessels and pipes to store or transport fluids. Over time, some of these vessels can corrode because of the caustic nature of the fluids inside them. PipeLIBS (Laser-Induced Breakdown Spectroscopy) is an elemental-analysis system that uses a laser beam to excite material so that it emits light at wavelengths characteristic of its chemical composition; it identifies the target elements and determines their concentration in a matter of seconds or minutes.

Designed for high-performance computers, MDHIM is a revolutionary software tool that performs more than a billion key/value inserts per second that can be retrieved in key order.

Today, scientists analyze data visually, often turning data into images or even movies. Current simulations on high-performance computers, such as supercomputers, make visualizing data untenable because of the resources required to move, search and analyze all the data at once. MDHIM provides a solution to this complicated problem by identifying, retrieving and analyzing smaller subsets of data.


Structural Health Monitoring (SHM) is quickly becoming an essential tool for improving the safety—and efficient maintenance—of critical structures, such as aircraft, pipelines, bridges and dams, buildings and stadiums, pressure vessels, ships, power plants, and mechanical structures such as amusement park rides and wind turbines.

Los Alamos engineers have developed SHMTools, software that provides more than 100 advanced algorithms that can be assembled to quickly prototype and evaluate damage-detection processes. It is a virtual toolbox that can be used to detect damage in various types of structures, from aircraft and buildings to bridges and mechanical infrastructure.

  Nevada National Security Site
 Argus Fisheye Velocimetry ProbeBuilding on technology from the Multiplexed Photonic Doppler Velocimeter, a portable optical velocimetry system that simultaneously measures up to 32 discrete surface velocities onto a single digitizer by multiplexing signals in frequency and time, the Argus Fisheye Probe measures the velocity distribution of an imploding surface along many lines of sight. Laser light, directed and scattered back along each beam on the surface, is collected into the launching fiber. The received light provides a continuous time record. The probe measures surface movement. It is used to better assist scientists in understanding the material behavior in shock physics experiments.
Sandia National Laboratories
LED Pulser

The Sandia LED Pulser uses light-emitting diodes (LEDs) rather than lasers to provide rapidly pulsed, multi-color, very bright light for scientific, industrial, or commercial uses, and can be used in applications formerly possible only with far more expensive light sources. Using custom electronic circuitry, it drives high-power LEDs to generate light pulses with shorter duration, higher repetition frequency, and higher intensity than do commercial off-the-shelf LED drivers. The Pulser already has been used in several research studies that helped design and optimize cleaner and more efficient engines, which could, in turn improve local air quality and public health.

  Y-12 National Security Complex
 LISe Thermal Neutron ImagerLTNI was developed through a collaboration with three Tennessee universities. The imager builds upon a lithium crystal that won an R&D 100 Award in 2013. Applications for the imager include research, diagnostics/medical imaging, law enforcement and national security.
Chemical Identification by Magneto-Elastic SensingThe product of a three-year Y-12-university collaboration, ChIMES is an inexpensive, small and portable chemical sensor with virtually limitless applications, including detection of chemical and biological warfare agents, toxic industrial chemicals, explosives and illegal drugs.