

Global Monitoring of Uranium Hexafluoride Cylinders

Jessica White-Horton, Oak Ridge National Laboratory
NMMSS Users Annual Training Meeting,
May 21, 2013

Outline

- Project Context & Current Challenges
- NNSA 5-year Program Plan
- Concept of Operations
- Stakeholder Views
- Conclusions and Next Steps

Model 30B cylinder for lowenriched uranium (LEU)

Model 48Y cylinder for natural uranium

Context for NNSA UF₆ Project

- Approximately 20,000 cylinders are in active circulation at any time
 - Each cylinder can contain enough ²³⁵U to make two significant quantities (SQs) of HEU
 - No industry-wide standard for uniquely identifying cylinders
 - No single listing of all UF₆ cylinders being used around the world
- Not all LEU is under IAEA safeguards when produced & shipped--NWS
- Enrichment capabilities (declared and clandestine) have increased in the last decade
- A small clandestine enrichment facility with a capacity of 10,000 25,000
 SWU/year could convert:
 - Contents of a 48Y cylinder containing natural UF₆ into an SQ of HEU in ~3 months 1 year
 - Contents of a 30B cylinder containing LEU (~3-5% enriched) into an SQ of HEU in ~30-90 days

Current Industry Practices

- Each facility has its own system for numbering and marking cylinders
 - No industry-wide standard for numbering
 - No widespread automated system exists

Current Safeguards Challenges

Safeguards efficiency

- Inconsistent application of cylinder IDs across industry
 - Increases likelihood of error in reading and recording IDs
 - Limits ability for IAEA to automate on-site inspection tasks and to efficiently match transfers
- Time to locate and identify cylinders
 - Consumes IAEA inspector time during inspections (Inspection days at larger GCEPs already exceed 100 days/year)
 - Reduces detection probabilities (IAEA resource constraints)

Current Safeguards Challenges (Continued)

- Safeguards effectiveness
 - Detecting diversion before a SQ of HEU can be produced
 - From on-site cylinder inventories
 - During transit
 - Detecting undeclared production pathways (using undeclared cylinders)
 - Detecting clandestine enrichment facilities
 - Transit matching
 - Time delays
 - Manual vs automatic matching

NNSA UF₆ Cylinder Monitoring Project Scope

- Enhance IAEA inspection capabilities to detect diversion and undeclared production in a more effective & efficient manner
- Develop a concept for a global identification and monitoring system for UF₆ cylinders
- Demonstrate at a proof-of-concept level the principal elements of a system that uniquely identifies UF₆ cylinders throughout their life cycle that can be used by both operators and the IAEA

Task 1: Key Findings

- An industry-wide UID must be:
 - Tamper-indicating for use by IAEA
 - Capable to be automatically scanned or read
 - Able to withstand a challenging/harsh environment
 - Capable to be applied during cylinder fabrication or in the field
- The IAEA detection of certain diversion/misuse scenarios could be improved
 - Excess production at a declared facility
 - Diversion in less than a year
 - Production at a clandestine facility
 - Diversion in transit
- Continued engagement with stakeholders is critical

Concept of Operations

- The concept for a global cylinder monitoring system for UF₆ cylinders has 3 principle components:
 - Standardized unique identifier (UID) for each cylinder
 - Unattended and portable *UID reader systems* at IAEA safeguarded facilities
 - Collection of safeguards-relevant cylinder information (e.g., UID, location) into an access-controlled, global "registry"

Unique Identifier

Concept

- Standardized format/design
- Unique across all industry
- Read remotely (by portable or unattended readers)
- Applied during fabrication and/or during recertification
- Usable by both the operator and IAEA
- Tamper-indicating for use by IAEA

Unique Identifier

Benefits

- Improves cylinder identification and reporting to SSAC and IAEA
 - Eliminates reading and transcription errors
 - Eliminates need for operator to apply additional labeling
 - Eliminates potential confusion over ID in reports (nameplate vs labels)
- Tamper-indicating feature increases confidence that nameplates have not been altered.
- Rapid reading of IDs by operator, regulators, and IAEA
 - Reduced inventory times
 - Reduced personnel exposure times in cylinder yards
- Can be integrated into plant systems (operations, safety, MC&A)
 - Potential for shared-use instruments

UID Reader Systems

Concept

- Portable readers can be used to inventory cylinders in storage areas
- Unattended readers can be installed at strategic locations
 - Cylinder receipt and shipment
 - Key operational points (in IAEA safeguarded facilities)

UID Reader Systems

Benefits

- Both operators and IAEA inspectors can improve efficiency in verifying cylinders
 - Reduced PDIs to verify flow and static inventories (~20-40/year or more)
 - Will strengthen effectiveness of unannounced inspections (SNRIs, ELFUAs)
 - Inspectors can redirect site effort to spend more time verifying design and operations
- New capability for IAEA to detect undeclared production pathways
 - Unattended, reader systems can confirm that only declared, registered cylinders are being processed
 - Detect undeclared feed pathways

UID Reader Systems

Benefits (continued)

- Operators can automate cylinder handling activities
- Provides fundamental component for all unattended monitoring systems currently being investigated for IAEA use:
 - Accountancy scale monitoring
 - Feed/withdrawal station monitoring
 - Flow monitoring (coupling on-line enrichment monitors with cylinders connected to process)

Access-Controlled, Global "Registry"

Concept

- Provide listing of all cylinders present in each State
- Collects cylinder-related information from existing sources:
 - Cylinders containing UF₆ at IAEA safeguarded facilities
 - Shipments of UF₆ between IAEA safeguarded facilities
- Collect additional information:
 - Fabrication of new cylinders
 - Cylinder destruction
 - Shipments of empty cylinders
 - Cylinder inventories in NWS

Access-Controlled, Global "Registry"

Benefits

- To IAEA
 - Easily generate a complete listing of all cylinders within each safeguarded country
 - Support acquisition path analyses, annual inspection plans and State evaluations
 - Strengthens ability to reconcile transfers between countries
 - Automated transit matching
 - More timely than current reporting requirements
 - Provides a technical basis for recognizing unregistered (potentially undeclared) cylinders
- To cylinder owners
 - Easily generate list of location of all their cylinders

Phased Implementation

- Initially focuses on cylinders in active circulation
 - 30B and 48Y cylinders
 - Notionally implemented over a 3-5 year period during cylinder recertification
- Long-term, incorporate into cylinder fabrication standards and regulations

Industry Feedback

- Companies seem interested in an industry-wide UID for cylinders
 - Must not present safety hazard (e.g., fall off in steam autoclave)
 - Companies are currently using barcodes, stencils, and markers to label cylinders
 - Resistance to changing from current formats
 - Several companies have (or have investigated) automated ID reader systems (for company applied labels)
 - Some national authorities and companies have registries of cylinders (e.g., CNSC)
- Questions about the UID
 - How much would they cost and who would supply?
 - Who would apply? When and where?
 - What happens if it gets damaged or destroyed during recertification?
- Some concerns about a global "registry"
 - Who would have access? Could it help their competitors?
 - Many objections to "tracking"

Conclusions

Global UID

- Would improve reporting to the IAEA
- Would immediately benefit transit matching process
- Some in industry are in general agreement, but still have concerns over some aspects
- A tamper-indicating, remotely readable UID
 - Would reduce time for IAEA to conduct on-site inspection activities
 - Is a fundamental component of unattended monitoring systems necessary to detect undeclared production scenarios
 - Must be globally unique
 - Must be designed to be useable by IAEA

Next Steps

- Investigate available technology for UID and reader systems
- Define global "registry" (e.g., data, owner, access, architecture)
- Estimate costs and analyze lifecycle cost benefit
- Continue and expand industry outreach
- Continue to engage the IAEA

- Jessica White-Horton
- **•** (865) 574-1075
- whitejl@ornl.gov