

U.S. Department of Energy Categorical Exclusion Determination Form

Submit by E-mail

<u>Proposed Action Title</u>: Ultrahigh Temperature Impervious Materials Advancing Turbine Efficiency (ULTIMATE & ULTIMATE SBIR/STTR) (FOA Nos. DE-FOA-0002337 & DE-FOA-0002338) Program

Program or Field Office: Advanced Research Projects Agency - Energy (ARPA-E)

Location(s) (City/County/State): AL; CA; CT; FL; IA; IL; IN; KY; MA; MD; MN; NE; NY; OH; OR; PA; RI; SC; TN; TX; UT; VA; WA; WI; WV

Proposed Action Description:

AMENDED PROGRAMMATIC NEPA DETERMINATION (See the attached original Programmatic Determination, dated February 23, 2021). This Amended Determination follows ARPA-E's receipt of required information and certifications from 11 additional Prime Recipients (See Attachment A in Bold) that were not covered under the original Programmatic Determination. The ULTIMATE Program is composed of 17 small-scale research and development projects that will be conducted by universities, non-profit entities, for-profit entities, and federal laboratories. This Amended Programmatic Determination along with the initial Programmatic Determination covers all 17 of the projects (See Attachment A). All 17 projects fit within the class of actions identified under the DOE Categorical Exclusions identified below and do not involve any extraordinary circumstances that may affect the significance of the environmental effects of the projects. This assessment was based on a review of the proposed scope of work and the potential environmental impacts of each project. All project tasks will be conducted in accordance with established safety and materials/waste management protocols and pursuant to applicable Federal, State, and Local regulatory requirements.

Categorical Exclusion(s) Applied:

- A9 Information gathering, analysis, and dissemination
- B3.6 Small-scale research and development, laboratory operations, and pilot projects
- B3.15 Small-scale indoor research and development projects using nanoscale materials

For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each categorical exclusion, see Subpart D of 10 CFR Part 1021.

Regulatory Requirements in 10 CFR 1021.410(b): (See full text in regulation)

The proposal fits within a class of actions that is listed in Appendix A or B to 10 CFR Part 1021, Subpart D.

To fit within the classes of actions listed in 10 CFR Part 1021, Subpart D, Appendix B, a proposal must be one that would not: (1) threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health, or similar requirements of DOE or Executive Orders; (2) require siting and construction or major expansion of waste storage, disposal, recovery, or treatment facilities (including incinerators), but the proposal may include categorically excluded waste storage, disposal, recovery, or treatment actions or facilities; (3) disturb hazardous substances, pollutants, contaminants, or CERCLA-excluded petroleum and natural gas products that preexist in the environment such that there would be uncontrolled or unpermitted releases; (4) have the potential to cause significant impacts on environmentally sensitive resources, including, but not limited to, those listed in paragraph B(4) of 10 CFR Part 1021, Subpart D, Appendix B; (5) involve genetically engineered organisms, synthetic biology, governmentally designated noxious weeds, or invasive species, unless the proposed activity would be contained or confined in a manner designed and operated to prevent unauthorized release into the environment and conducted in accordance with applicable requirements, such as those listed in paragraph B(5) of 10 CFR Part 1021, Subpart D, Appendix B.

There are no extraordinary circumstances related to the proposal that may affect the significance of the environmental effects of the proposal.

The proposal has not been segmented to meet the definition of a categorical exclusion. This proposal is not connected to other actions with potentially significant impacts (40 CFR 1508.25(a)(1)), is not related to other actions with individually insignificant but cumulatively significant impacts (40 CFR 1508.27(b)(7)), and is not precluded by 40 CFR 1506.1 or 10 CFR 1021.211 concerning limitations on actions during preparation of an environmental impact statement.

Based on my review of the proposed action, as NEPA Compliance Officer (as authorized under DOE Order 451.1B), I have determined that the proposed action fits within the specified class(es) of action, the other regulatory requirements set forth above are met, and the proposed action is hereby categorically excluded from further NEPA review.

NEPA Compliance Officer: GEOFFREY GOODE Digitally signed by GEOFFREY GOODE Date: 2021.03.25 12:23:45 -04'00'

Attachment A: Projects in the ULTIMATE (FOA No. DE-FOA-0002337) & ULTIMATE SBIR/STTR (FOA No. DE-FOA-0002338) Programs

Full Application	Lead Organization	Project Title	Categorical
Control Number	Lead Organization	Project fitte	Exclusion
	General Electric	ULTIMATE Refractory Alloy Innovations for Superior Efficiency	
	Company, GE	(RAISE)	
2337-1501	Research		A9; B3.6
	Oak Ridge	Facility for Evaluating High Temperature Oxidation and	
	National	Mechanical Properties	
2337-1503	Laboratory		A9; B3.6
	Raytheon	ARPA-E ULTIMATE:ARPA-E: ULTIMATE Additive Manufactured OSD	
	Technologies	High Entropy Alloys (P.E00.0456)	A9;B3.6;
2337-1506	Research Center		B3.15
	Raytheon	Environmental Protection Coating System for Refractory Metal	
	Technologies	Alloys (EPCS for RMA) (P.E00.0473)	A9;B3.6;
2337-1507	Research Center		B3.15
	University of	New Environmental-Thermal Barrier Coatings for Ultrahigh	
	Maryland	Temperature Alloys	
2337-1512	College Park		A9; B3.6
	University of	High Entropy Rare earth Oxide (HERO) Coatings	
2337-1530	Virginia	Thigh Entropy Naic curtin Oxide (HERO) coutings	A9; B3.6
	University of	Designing Novel Multicomponent Niobium Alloys for High	110,2010
	Utah	Temperature Integrated Design, Rapid Processing & Validation	
2337-1531		Approach	A9; B3.6
	Texas A&M		
	Engineering	Batch-wise Improvement in Reduced Design Space using a	
	Experiment	Holistic Optimization Technique (BIRDSHOT)	
2337-1535	Station		A9; B3.6
	West Virginia		
	University	High-Throughput Computational Guided Development of	
	Research	Refractory Complex Concentrated Alloys-based Composite	A9;B3.6;
2337-1538	Corporation		B3.15
	The Boeing	Ultra-High-Performance Metallic Turbine Blades for Extreme	
	Company	Environments	A9;B3.6;
2337-1564			B3.15
	National Energy	Rapid Design and Manufacturing of High-Performance Materials	
	Technology	for Turbine Blades Applications above 1300 Celsius	
2337-1568	Laboratory		A9; B3.6
	University of	Additive Manufacturing of Ultrahigh Temperature Refractory	
	Wisconsin –	Metal Alloys	
2337-1570	Madison		A9; B3.6
	Oak Ridge	DEVELOPMENT OF NIOBIUM-BASED ALLOYS FOR TURBINE	
	National	APPLICATIONS	A9;B3.6;
2337-1585	Laboratory		B3.15

Attachment A: Projects in the ULTIMATE (FOA No. DE-FOA-0002337) & ULTIMATE SBIR/STTR (FOA No. DE-FOA-0002338) Programs

	Pacific Northwest National	SELECTIVE THERMAL EMISSION COATINGS FOR IMPROVED TURBINE PERFORMANCE	
2337-1590	Laboratory		A9; B3.6
	Massachusetts Institute of	Additive Manufacturing of Oxygen-Resistant Gradient Refractory	A0.P2 6.
2337-1601	Technology	Composites	A9;B3.6; B3.15
2337-1001	Pennsylvania	Design and Manufacturing of Ultrahigh Temperature Refractory	55.15
	State University	Alloys	
2337-1619	•		A9; B3.6
	Questek	Concurrent Design of a Multimaterial Niobium Alloy Systems for	
2338-1507	Innovations LLC	Next-generation Turbine Applications	A9; B3.6