

## National Nuclear Security Administration Categorical Exclusion Determination Form



NEPA ID#: APM 15-014

Proposed Action Title: the Stewardship Science Academic Alliance (SSAA)

Program or Field Office: APM

Grant No.: Multiple

Location(s) (City/County/State): Various locations

## **Proposed Action Description:**

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) proposes to provide financial assistance to several University and Institutions for the Stewardship Science Academic Alliance (SSAA). The financial assistance would be given to the institution for travel, fringe and indirects, supplies and materials, equipment, user fees, publication costs, tuition, stipends and salaries to support staff, undergraduate, graduate, postdoctoral students, research professors, their principle investigator(s) and other universities' support (collaborators). The projects reviewed for this determination include the following:

| <b>Grant Number</b> | Principal Investigator | Project Title                                                     |
|---------------------|------------------------|-------------------------------------------------------------------|
|                     |                        |                                                                   |
| DE-NA0002929        | Jeffrey Jacobs         | University of Arizona - An Experimental Study of the              |
|                     |                        | Turbulent Development of Rayleigh-Taylor and                      |
|                     |                        | Richtmyer-Meshkov Instabilities                                   |
| DE-NA0003107        | Douglass W.            | Ohio State University - High Energy Density Physics               |
|                     | Schumacher             | Program At The Scarlet Laser Facility                             |
| DE-NA0002915        | Zhenqiang Ma           | University of Wisconsin-Membrane Enabled Hard X-ray Imager (MEHX) |
|                     |                        |                                                                   |
| DE-NA0002953        | Warren B. Mori         | University of California, Los Angeles- Parallel Kinetic           |
|                     |                        | Simulations to Laser and Electron Transport Through High          |
|                     |                        | Energy Density Laboratory Plasmas                                 |
| DE-NA0002907        | Baosheng Li            | Stony Brook University-Thermodynamic and Mechanical               |
|                     |                        | Properties of SSP Materials from Simultaneous Ultrasonic          |
|                     |                        | and X-Ray Studies at high Pressure and Temperature.               |
| DE-NA0002932        | Partha Chowdhury       | University of Massachusetts – Lowell Nuclear Science              |
|                     |                        | with a C7LYC Array (SCANS)                                        |
| DE-NA0002925        | Anatoli Afanasjev      | Mississippi State University                                      |
|                     |                        | Microscopic Description of Fission in a Relativistic              |
|                     |                        | Framework                                                         |
| DE-NA0002921        | Uwe Griefe             | Colorado School of Mines                                          |
|                     |                        | High Precision Fission Studies with the NIFFTE Fission            |
|                     |                        | Time Projection Chamber                                           |
| DE-NA0002922        | Devesh Ranjan          | Georgia Tech Research Corporation                                 |
|                     |                        | Detailed Measurements of turbulent: Rayleigh-Taylor               |
|                     |                        | Mixing at Large Atwood Numbers                                    |
| DE-NA0002926        | Walter Loveland        | Oregon State University                                           |
|                     |                        | The Energy Release in Neutron Induced Fission of 233U             |
| <u> </u>            |                        |                                                                   |

| DE-NA0002930 | Marc Meyers | University of California-San Diego                  |
|--------------|-------------|-----------------------------------------------------|
|              |             | Viscous Plastic Flow, Dislocation Velocities, and   |
|              |             | Amorphization at Extreme Pressures and Strain Rates |

## Categorical Exclusion(s) Applied:

B3.6 Small-scale research and development, laboratory operations, and pilot projects

A1 Routine DOE business actions

A9 Information gathering, analysis, and dissemination

For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions including the full text of each categorical exclusion, sec Subpart D of 10 CFR 1021.

Regulatory Requirements in 10 CFR 1021.410(b): (Sec full text in regulation)

The proposal fits within a class of actions that is listed in Appendix A or B to 10 CPR Part 1021, Subpart D.

To fit within the classes of actions listed in 10 CFR Part 1021, Subpart D, Appendix B, a proposal must be one that would not: (1) threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health, or similar requirements of DOE or Executive Orders; (2) require siting and construction or major expansion of waste storage, disposal, recovery, or treatment facilities (including incinerators), but the proposal may include categorically excluded waste storage, disposal, recovery, or treatment actions or facilities; (3) disturb hazardous substances, pollutants, contaminants, or CERCLA-excluded petroleum and natural gas products that preexist in the environment such that there would be uncontrolled or unpermitted releases; (4) have the potential to cause significant impacts on environmentally sensitive resources, including, but not limited to, those listed in paragraph B(4) of I O CFR Part 1021, Subpart D, Appendix B; (5) involve genetically engineered organisms, synthetic biology, governmentally designated noxious weeds, or invasive species) unless the proposed activity would be contained or confined in a manner designed and operated to prevent unauthorized release into the environment and conducted in accordance with applicable requirements, such as those of the Department of Agriculture, the Environmental Protection Agency, and the National Institutes of Health.

There are no extraordinary circumstances related to the proposal that may affect the significance of the environmental effects of the proposal.

The proposal has not been segmented to meet the definition of a categorical exclusion. This proposal is not connected to other actions with potentially significant impacts (40 CFR 1508.25(a)(1)), is not related to other actions with individually insignificant but cumulatively significant impacts (40 CFR 1508.27(b)(7)), and is not precluded by 40 CFR 1506.1 or 10 CFR 1021.211 concerning limitations on actions during preparation of an environmental impact statement.

Based on my review of information conveyed to me and in my possession concerning the proposed action, as NEPA Compliance Officer (as authorized under DOE Order 451. 1B), I have determined that' the proposed action fits within the specified class(es) of action and that other-regulatory requirements set forth above are met. Therefore, the application of a categorical exclusion is appropriate.

John E. Weckerle Digitally signed by John E. Weckerle
DN: c=us, o=u.s. government, ou=department
of energy, ou=Energy IT Services, ou=DOE
Common Operating Environment, ou=People,
ou=John E. Weckerle
Date: 2016.04.28 09:29:02 -06'00'

NEPA Compliance Officer: John Weckerle Date Determined: 4 / 2 8 / 1 6