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IT.

Introduction

The purpose of this note is to bring together the various assumptions
that are stated in the literature or are tacitly understood and which
form the basis for the well known relationship between the grade-
thickness product and the total or gross gamma ray response of a borehole
probe. As this relation pertains to calibration, certain conditions

have been established by the Energy Research and Development Administra-
tion (ERDA) in order to assure uniformity among the various gross gamma
ray probes. That these conditions and their implications are sometimes
misunderstood is an understatement. An example illustrating the analysis
of digital calibration data is presented in the hope that such misunder-
standing may be cleared up and at the same time demonstrate the efficacy
of a few common integration techniques.

Basis for Quantitative Analysis

The quantitgtive interpretation of gross gamma-ray logs is based on the
relation "

where G, is the average radiometric grade expressed in percent equivalent
(%e) U 68 by weight, T is the thickness of the uranium bearing zone, A is
the arga under the gamma-ray response curve corrected for resolving time
losses, and k is a constant of proportionality refefred to as the k-fagtor.
This relation has been established both empirically! and theoretically

by making certain assumptions and imposing a set of standard conditions.

The assumptions made for a characteristic response, interpretable by
the above relation are:

1.) The effective volume that the probe passively
samples (referred to as the effective sample
volume) is essentially spherical; that portion
on and near the axis of the probe being suf-
ficiently small such that the departure from
sphericity is negligible.

2.) Any zone, either barren or mineralized, is
completely and uniformly filled with a
homogeneous material that extends beyond the
effective sample volume of the probe. Zone
isotropy implies that the density, the equi-
valent atomic number, and the linear gamma-
ray absorption coefficient are constant
throughout a zone. (The presence of other
matter such as rock, borehole fluid, casing,
probe housing, etc., is neglected.)

3.) The boundary between different zones, such
as mineralized and barren, is well defined.



4.) The probe moves along the borehole with
constant velocity and samples its en-
vironment uniformly in time (hence the
spatial sampling interval is constant).

5.) The probe does not respond to the mineralized
zone when the distance between the mineralized
zone and the probe, comprised of barren material,
is greater than one effective sample volume
radius.

6.) The thickness of a mineralized zone is at
least one effective sample volume diameter.

7.) The detector is taken as a point detector
(i.e., a detector without extent).

While this completes the basic assumptions on which the relation G_T = kA
is predicted, item 2.) above, neglects conditions which are encountered in
actual logging. Therefore, a requirement is imposed which relates any
gamma-ray log to an accepted standard. This requirement, generally stated,
specifies a set of standard conditions, under which all sampling intervals
are to be made. These conditions¢, defined by ERDA (nee AEC), may require
corrections to the logging parameters if they are not met. The standard
conditions are:

A) A borehole diameter of 4.5 inches,

B) The medium filling the borehole is air,

C) No borehole casing,

D) Effective interstitial fluid in the mineralized zone
is 12% by weight,

E) The ratio of the true mean uranium grade to the

mean radiometric (equivalent) grade is unity.
(Parent and daughters are in secular equilibrium.),

continuing with specific applicability to the GJO recommended calibration
procedure,

F) The logging speed should be 5 ft/min (1 inch/sec),

G) The sampling interval should be at most 0.5 feet
for digital systems (or 10 cm for metric based
digital systems),

H) The ratemeter time constant should be about one second,

I) The abscissa of the chart recorder should be five feet
per inch (or one meter per two centimeters) of chart
paper,

J) The hole is logged from the bottom to the surface with
the probe in physical contact with the wall of the hole.

These standard conditions are rarely, if ever, met in field logging operations.
However, they can be maintained for the calibration procedure.
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IV.

Test Pit Calibration - General

When industry logging units come to the ERDA-GJO facility for the purpose
of calibrating a total gamma-ray probe, they are interested in determining
(or checking) four logging parameters. These parameters are:

a) The electronic resolving time T,

b) The k-factor,

c) The water-hole size correction factor,

d) The casing correction. ’

The resolving time (or "dead" time) is the minimum time necessary to completely
process an event (gamma-ray) and be ready to accept and process another event.
The k-factor relates the response of the probe to the grade-thickness product
(G_T). The water-hole size factor relates water filled holes of various
didmeters to the standard (4.5 inches) dry hole. The dependence of hole size
in air is small. The casing factor relates casing thickness to that of the
standard (uncased) borehole.

More often than not, the first two parameters (Tt and k) are frequently
checked while the latter two are performed once per probe and only repeated
if a significant variation in the k-factor is found. Therefore, only the
determination of t and k will be pursued herein.

Resolving Time Algorithm

The reso]vigg,time T is determined using an approach developed by Crew

and Berkoff” from their detailed "two pit concept". Each output datum nis
measured within the ith one-half foot (standard) interval must be cor-
rected to include those counts not recorded in that interval because the
electronic system was busy. Letting Ni represent the true count rate for
the ith interval, then

relates the observed count rate n; to the true count rate through the
resolving time t of the system. This relationship is valid when the
process sampled is a true random process and the resolving time is not
a function of the counting rate. A typical (characteristic) response
curve is shown in Figure 1 and indicates both the observed and the true
count rate versus probe depth.

The approach currently used utilizes the data obtained from logging two
test pits of different grades; one referred to as the low grade pit and
the other the high grade pit, having grade-thickness products designated
by (G'T)2 and (G_T)j respectively. Taking the ratio of the relations
goverxing the regponse to the low and high grade pits gives



where A denotes the area under the designated response curve. Approximating

the area by a rectangle (see Table I for comparative values) that is N

high by T wide where N is the average over the statistically constant portion
of the Beak (referred to as the peak plateau) and T is the width of the zone

defined” as the full width at half maximum. Substituting for the area
A=NT, the above becomes

(Gy)s - Mo .

(GY)h Np -

Representing the Tow to high grade ratio by R, i.e.,

{8y

(EQ)h

=
H

and substituting for N@ and Nh, using

n n,
= '3 - h
Ny = T,r and Ny = T7, T
gives
. 2@ 1-nhT
]'"QT nh

where n, is the average count rate over the statistically constant portion
of the peak as determined from the observed low grade log while n,_, in the
same way, corresponds to the high grade log. Solving the above fgr the
resolving time

ﬁh-ﬁh R

T mm(T-R)
gives the desired relation.

Current Determination of Resolving Time

Currently four test pits are logged and used to determine the resolving
time: N3, Ul, U2, and U3. From this data, five ratios are computed:
Uz/ut, U3/U1, N3/UT, U3/U2, and N3/U2. Each of these five combinations
determines a T as outlined above, viz., the average over the statistically
constant portion of the peak is computed for each of the two pits and
combined with the corresponding R which is determined from the grade

data given in the test pit specification sheets. Finally, the average of
the five values for the resolving time is computed and used in further
analysis.



Calculation of the k-factor for a Symmetric Digital Response - An Example

The characteristic response curve obtained from the N3 test pit is

used in conjunction with the average resolving time to determine the
k-factor. First, each measured point of the response curve is corrected
for finite resolving time losses and tabulated on a work sheet (Form
BFE-1025) as, for example, is shown in Figure 2 and plotted in Figure 1.
In this example, N3 was sampled in 5 cm intervals (labeled I) which are
tabulated in the first (fourth) column, the measured data (n) in the
second (fifth) column, and the resolving time corrected data (N) in the
third (sixth) column. Although the data does not conform to the ERDA
standard of 10 cm intervals it will be treated without this restriction
for now and adjusted later.

First, notice in Figure 1 that the response to N3 is not symmetric.

For the moment, assume that the response is symmetric; then the area
under the curve would be determined by the trapezoidal "rule" which,

for equal increments, reduces to a sum over all the corrected counts
from constant background on one_side to a constant background on the
other side of the peak response3. Multiplying the sum by the (constant)
summation interval gives the area in units of counts-meters. Thus in
Figure 1, summing from 0.325 m to 3.325 m inclusive gives

3.30 m
bX = 140,375 counts/sec
03531

and for the constant 5 cm (0.05 m) interval gives an area

A = (140,375 counts/sec)(0.05 m) = 7018.75 m - counts/sec.
Converting this result to the ERDA standard of 10 cm intervals (or 0.5 ft
in the British system of units) and following the current convention of

expressing the area in units of counts when normalized to the standard
interval, yields

_ 7018.75 m - counts/sec _
Astd = RO = 70187.5 counts/sec.

Although the result of this example is incorrect (because the response is
not symmetric), it exemplifies the procedure employed when the response is
symmetric. Note that there is a slight difficulty in picking the limits
of summation. Most likely though this uncertainty will not significantly
affect the final result. The non-zero contribution to the tail is assumed
to be due to naturally occurring activity.

The area, in units of counts for a standard interval, is used to compute
the k-factor. Using for N3, G’T = 0.9976 %eU30o-feet (0.3041 %eU308-meters)
gives
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K = (GYT)N3 _ 0.3041 %eU30g-meters
AStd 70187.5 counts/sec

4.33 X 1078 %el0q-meter/counts/sec

Note the units of k. Had we not normalized the area under the response
curve to the ERDA standard 10 cm interval but expressed the area under
the curve in its proper two dimensional units (i.e., meter - counts/sec),
then the units of_k would be %eU 08/counts/sec and the value of k itself
would be 4.33X107° %eU04/countsséc.

Another example which brings out this feature of expressing the area under
the curve in units of one dimension can be given by considering an ap-
plication of the rectangular approximation to compute the area. The
area of a rectangle is the product of two adjacent sides: Estimating
the area of the response curve then, the area is A=NT where N is the
average count rate over the statistically constant (flat) portion of the
peak expressed in counts/sec and T, a length, is the full width at half
maximum of the response curve i.e., the width of the response taken
between the half maximum points (see Figure 1 where two corners of the
rectangle are indicated). Dimensionally the area A is given in units of
count rate-length. If one converts the rectangular approximation to a
standard interval, say in the British system, then the normalized area
would be A_, =NT/0.5 and would have units of count rate only because the
one half f33g in the denominator is a standard interval. In other words,
there are T/0.5 or 2 T standard half foot intervals in the full width at
half maximum. The normalized area Astd is the product of N and 2 T; the
latter is dimensionless.

Current Procedure for an Asymmetric Digital Response

The response curve from N3, as noted earlier, is not symmetric, therefore,
it must be treated differently from the example given. After determining
the average t and correcting each measured datum (which collectively define
the response curve) for finite resolving time losses, the average over

the peak plateau is computed and the half maximum found. The peak response
is summed (trapezoidal method) within the limits defined by the full width
at half maximum. An appropriate correction is made at each limit of the
summation because the half maximum points do not usually coincide with a
boundary of a summation interval (e.g., a 5 cm interval in the example
previously given). The tails of the response curve are determined by sum-
ming only the one side from the region of constant background to the half
maximum point (again a correction may be necessary for the upper limit or
half maximum point). This result is doubled and is taken as the total area
for both tail regions. The tail that is summed corresponds to the upper
part of the N3 test pit (the limits are 0.325 m &0d 1.375 m in the example
shown in Figure 1). The total tail area and the area defined by the half
maximum 1imits are summed to give the total area which is then used to com-
pute the k-factor. An adjustment may be necessary, as in the example, to
convert the area into units of count rate for an ERDA standard interval.



VIIT. Comparative Numerical Techniques

Table 1 gives the results of various numerical integration techniques.

The most accurate is the parabolic method. A1l other results are nor-
malized to this result for comparison purposes. The current technique
used by the Test and Evaluation Department is the trapezoidal method.

The final two entries both compute the area using one-half of the response
curve. By integrating only over half the curve, the anomaly found in

the lower barren region of N3 is neglected. The basis for doing this is
the presumption that the response curve from the test pit should be
symmetric. The last entry, the rectangular approximation (used earlier

in obtaining the two pit algorithm) gives a result which is low partly
because by its use, a portion of the tail-background region is automatically
excluded. Note however, that the thickness computed by this method agrees
quite well with the value quoted on the N3 specification sheet of T=4.19
feet (to within less than 1%). This supports the approximation made

in the derivation of the two pit algorithm. The relative accuracy in
determining the thickness T using only half the curve is a factor of three
better than using either integration method. The rectangular method does
not require the resolving time correction be applied to each datum, it
only need be applied to the final result. Two corners of the rectangle
are indicated in Figure 1. The k-factor is computed and tabulated in the
final column of Table I.

This comparison of numerical techniques is intended for the understanding
of the user making deadtime and k-factor determinations from digital data
with the aid of a desk calculator. There are of course computer programs
which may employ techniques different from those outline herein. Never-
theless, the procedure and techniques discussed above will provide a rapid
check of the more elaborate calculation.
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Figure 1

Figure 2

FIGURE CAPTIONS

Log of N3 Test Borehole. Plot of typical total gamma-ray log
of ERDA-GJO test pit N3. The dots are the measured digital
response and the triangles correspond to the resolving time
corrected digital response. A curve has been drawn through the
data to aid the eye. The limits of the rectangular integration
method are indicated on either side of the measured response.
See text for details.

Work sheet (Form BFE-1025) used to determine calibration
parameters. The interval I (columns one and four) is in units
of meters, the measured response (n) is in column two (five)
and the resolving time corrected data (N) is in column three
(six). The data are plotted in Figure 1.
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Grand Junction Operations Page ___ of
P.0.Box 1569
Grand Junction, Colorado 81501
GAMMA RAY LOG INTERPRETATION WORK SHEET
BFE-1025
Company Log Operator Unit No.
Address Interpreter -Probe No.
City State Water Factor Ratemeter No.
Lip K Factor -Equipment Manufacturer
Date Logged Other Factors
Date Interpreted
Company Contact
:j e — e —— e ——————— E————
Inches n N Inches n N APPARENT DEADTINME
E, E Probe No Prohe No
E, E.
v B, +E, = Ey + E. = U, /U,
E, + E, X1.38 = E, + E, X 1.38 =
I 0,35 30 30 I 1.85 | 5170 5207 f| Ui/Us
0.4 30 30 1.9 5190 5227 U, /N,
0.45 30 30 1.95 5180 5217
0.5 30 30 2.0 5180 5217 | U=/Us
0.55 30 30 2,05 5170 5207 Us/Ns
0.6 40 40 2.1 5180 5217
0.65 40 40 2.15 5200 5238 Us/N,
0.7 40 40 2.2 5180 5217 Nean 1.38 usec
0.75 50 50 2.25 5130 5167
0.8 50 50 2.3 5110 5146 WATER FACTORS
0.85 60 60 2.35 5040 5075 Probe No. Probe No
0.9 80 80 2.4 4940 4974 MODEL
0.95 100 100 2.45 4770 4802 0-2.25"
1.0 140 140 2,5 4480 4508 .
1.05 210 210 2.55 4030 4053 0-4.5"
1.1 330 330 2.6 3370 3386 0-6.5"
1.15 510 510 2.65 | 2580 2589 -9
1.2 800 801 2.7 1810 1814 0-8.5"
1.25 1250 1252 2.75 1230 1232 N-3
1.3 1900 1905 2.8 850 851
1.35 2740 2750 2.85 620 620 U-3
1.4 3570 3588 2.9 490 490 U-2
1.45 4200 4224 2,95 410 410
1.5 4580 4601 3.0 360 360 U-1
1.55 4810 4842 3.05 330 330  |fComments.
1.6 4960 4994 3.1 310 310
1.65 5040 5045 3.15 290 290
1.7 5130 5167 3.2 290 290
1.75 5140 5177 3.25 280 280
1.8 5150 5187 3.3 280 280

Figure 2







