2013 DOE Hydrogen and Fuel Cells Program Review

Development of Large Format Lithium Ion Cells with Higher Energy Density

Erin O'Driscoll (PI)
Han Wu (Presenter)
Dow Kokam
May 13, 2013

Overview

Timeline

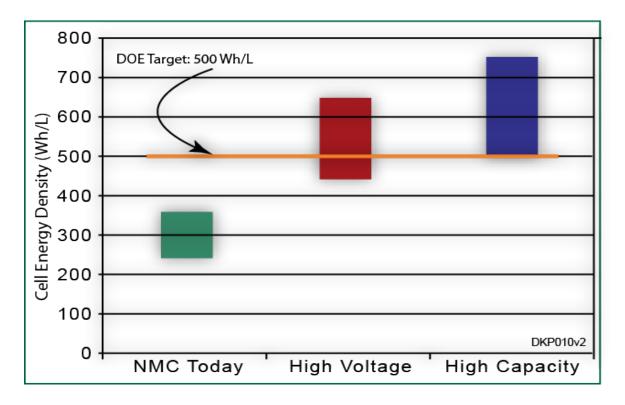
- Project start date: Oct. 1, 2011
- Project end date: Mar. 31, 2015
- Percent complete: ~30%

Budget

- Total estimated project cost:
 - DOE share: \$4,986,984
 - Dow Kokam share: \$2,431,606
- Funding received in FY11: \$1,957,460
- Funding for FY12: \$997,560
- Total funding received: \$2,955,020

Barriers

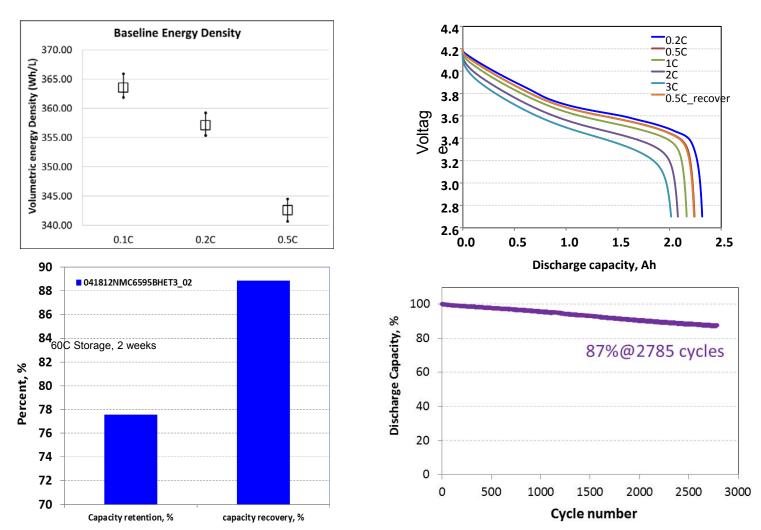
- Barriers addressed
 - Increase energy density of lithium ion battery
 - Reduce cost
 - Maintain good cycle life


Partners

- Dow Kokam Project Lead
- Wildcat Discovery Technology (WDT)
 Cathode Materials and High Voltage Electrolytes
- Oak Ridge National Lab (ORNL) Material Characterization
- University of Missouri, Kansas City (UMKC) – Analytical Support

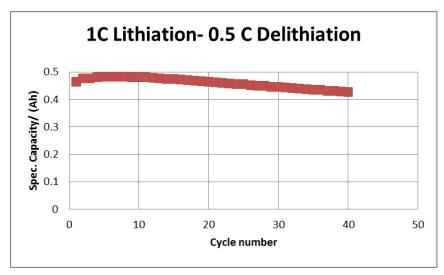
Project Objectives

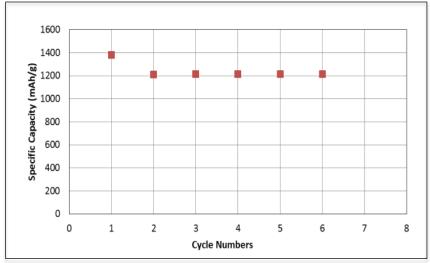
To research, develop, and demonstrate Li-ion battery cells that are capable of achieving an energy density of >500 Wh/L and a power density of >500 W/L while maintaining comparable performance standards in terms of cycle life (300-1000 cycles at 80% initial capacity), calendar life (5-10 years), and durable cell construction and design capable of being affordably mass produced.



Project Approach

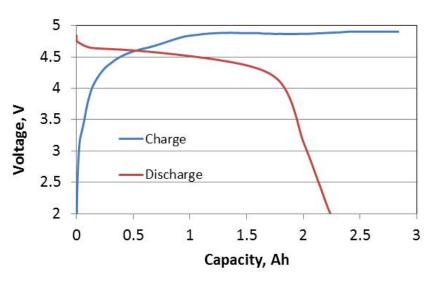
- Phase 1: Mobilize Resources, Implement Project Management Plan, Institute Project Controls (On-going)
- Phase 2: Establish Model & Performance Baseline NMC/Graphite Cell,
 Establish Baseline Capacity For Cells, Install Equipment (90% Completed)
- Phase 3: Optimize High Voltage Cell Design and Finalize Materials
 Development, Scale Up High Voltage Cathode Material, Produce High
 Energy Interim Cells, Estimate Costs (40% Completed)
- Phase 4: Develop and Optimize High Capacity Materials and Cell Designs,
 Produce High Energy Interim Cells, Estimate Costs (20% Completed)
- Phase 5: Produce And Deliver Large Format Baseline and High Energy Cells (Not Scheduled to Start Until 2014)
- Phase 6: Verify Achievement of Cost Goals and Develop Commercialization Plan (20% Completed)


Performance of 2-Ah Hand-Assembled Baseline Cells

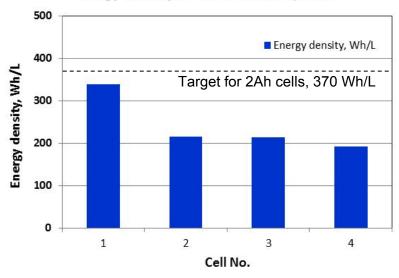


Baseline cells passed all tests; they will be delivered to ANL for testing in April 2013

High Capacity Anode Development



Anode Material 1


Anode Material 2

- Si-based anodes provide high capacity as claimed
- Matching between anode and cathode is important
- Charging conditions must be optimized
- DK is now testing full cells

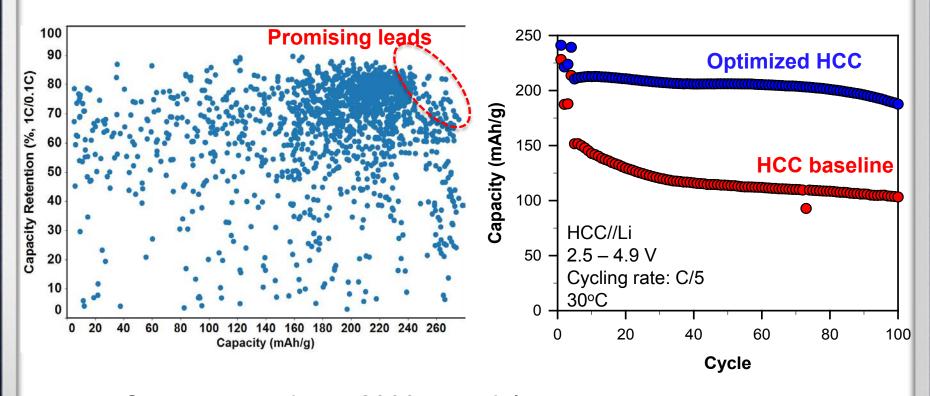
High Voltage Cathode Development

Energy density of CM1 2Ah Cells, Wh/L

- The high voltage material system, CM1/EM1/Graphite, achieved an energy density of ~340 Wh/L in 65X95-mm hand-made cells
- Gas generation continued throughout the cycle life test
- Three-electrode cells showed that the cathode reached >5V during cycling
- Presently:
 - Developing improved HVC with higher specific energy
 - > Evaluating effects of cell resistance by changing electrode design

High Capacity Cathode Development

	Comparison with State of the Art				
Metric	NMC LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂	LMNO LiMn _{1.5} Ni _{0.5} O ₄	OLO Li _{1+a} Ni _x Mn _y Co _z O ₂	НСС	
Capacity (mAh/g)	155	147	274	288#	
Gr. Energy (Wh/kg)	590	690	1000	1090#	
Vol. Energy (Wh/L)	2760	3060	4470	4790#	
Rate Performance (% at 1C)	87	95	80	-	
Cycle Life (80% of Initial)	>1000	~700	300	-	
Cost (\$/kg)	24-30	~20	~22	~21*	


[#] Theoretical Values

- Low irreversible capacity and no voltage fade are expected for HCC
- HCC has potential to directly compete with OLO

^{*} Estimation based on similar process cost of OLO

High Capacity Cathode Development Status

- Screen more than ~2000 materials
- Improve stability to air, capacity, and energy density
- Develop low cost solid state synthesis for HCC

High Capacity Cathode Development Status

Metrics	Theoretical	HCC Baseline	HCC from Primary Screen
Capacity (mAh/g)	288	240	267
Energy (Wh/kg)	1090	864	977
Rate Performance (% at 1C)	-	68	77
Reversible Capacity (%)	-	75	90
Full Cell Cycle Life (80% of Initial)	-	50	N/A
Stability	-	Air sensitive	Air stable

- Promising HCC materials are identified by WDT
- WDT is screening for precursors and dopants

Collaboration

- Wildcat Discovery Technologies Dr. Bin Li
 - Screening of new HVC and HCC materials
 - Screening of dopants to improve material performance
 - Development of synthesis techniques
- Oak Ridge National Laboratory Dr. David Wood
 - Materials characterization
 - Failure mode analysis
- University of Missouri, Kansas City Prof. Xiaobo Chen
 - Analytical support

Proposed Work in 2013

- High Capacity Anode (HCA)
 - Fabricate and test 2-Ah full cells with HCA as the anode
- High Voltage Cathode (HVC)
 - Test improved CM1 in half cells and full cells
 - Search and down-select alternative high voltage electrolytes
 - Combine HVC and HCA in 2-Ah format full cells, deliver to ANL for testing if performance is promising
- High Capacity Cathode (HCC)
 - Complete material development and finalize candidate materials
 - Material characterization for physical and electrochemical properties
 - Test the compatibility of HCC and HCA

Program Summary

- Goal: To develop a large format lithium ion cell with energy density > 500 Wh/L
- Approach: Develop 2-Ah format baseline cells using high voltage and high capacity cathodes, in parallel, with high capacity anodes
- Technical accomplishments in 2012:
 - Baseline cells completed, will be delivered to ANL (est April 2013)
 - Si-Based anodes screened and selected, specific capacity >500 mAh/g
 - High voltage cathode demonstrated 340 Wh/L in 64X95-format full cells with graphite anode
 - Development of high capacity cathode material initiated, currently achieved ~250 mAh/g before optimization