Advances In Thermal Energy Storage

Ravi Prasher Director Energy Storage and Distributed Resources Division Lawrence Berkeley National Lab

> Adjunct Professor Department of Mechanical Engineering University of California Berkeley

ENERGY TECHNOLOGIES AREA

More than 90% of Energy Budget involves Thermal Process

Thermal energy is the dominant component of our energy system

Current System Architecture

Integrated Energy Supply Systems (Prasher & Majumdar, ARPA-E HEATS workshop)

Solar Exceeds 50% in CA but Price drops Below Zero

Dispatchable Renewable Power

Dispatchability

Thermal Storage to Store Electricity

This can potentially enable electrical storage with cost of pumped hydro but geographically independent

References: 1) <u>https://x.company/explorations/malta/ 2</u>) Prof. Robert Laughlin, Nobel Laureate, Stanford University

Thermal Management Applications of Storage

Heating & Cooling is ~50% of Energy Consumption in Buildings

Building thermal loads are highly variable

Source: LBNL Environmental Energy Technologies Division, 2009

Thermal Storage In Building Walls

A typical 2000 ft² residential building can store an estimated 44 Ton-hours (~150kWh_t) of thermal energy. This is equivalent of 9 hours of storage assuming 5 ton of cooling.

Challenge: Tunable Transition Temperature

Thermal Management of Vehicles

- Heating/cooling of cabin can reduce driving range of Electric Vehicles by 40%
- Cold Start of IC vehicles increases fuel consumption and GHG emissions

Thermal Storage for ICV and EV

Exhaust ~ 400 – 500 °C

Science and Technology Challenge

 Reliable and cost effective thermal storage

 Long distance transmission of thermal energy

A U.S. Department of Energy initiative leveraging the expertise of the National Laboratories to achieve the full economic potential of U.S. thermal energy

Aiming for Theoretical Limits

Thermal Energy Processes are atomic/molecular scale phenomena

	Data	Theoretical limit
Conduction	High ~ $2kW/m^2-K$ (L = 1m)	~1 GW/m²-K
K	Low ~ 12 mW/m-K (50% of air)	None
Phase change heat transfer	~5 - 10 MW/m ²	160 MW/m ²
Thermal Storage	< 1 MJ/kg	None (Gasoline ~ 40 MJ/kg)
Heat to electricity (solid state)	~15-20% of Carnot	Carnot Prasher & Majumdar (to be published)

6

Harnessing molecular phenomena for thermal processes

Exploring the Limits of Thermal Conduction

Nonlinear Thermal Transport: Enabled by Materials Science

High contrast switch with minimal hysteresis

- Phase transitions
- Intercalation
- Geometry

Long Distance Thermal Transport and Storage: Phonons to Chemical Bonds

 $A \leftrightarrow B + C \quad \Delta H = T \Delta S$

Chemistry Challenges

- Large entropy change in condensed state
- Tunable entropy change
- Tunable activation energy
- Large thermal effusivity

(Gur, Sawyer & Prasher, Science, 2012)

Other Challenges

Most thermal storage based on: Solid/liquid phase change or sensible liquid heating

- 1) Leakage
- 2) Thermal expansion
- 3) Corrosion
- 4) Low specific heat of liquids

How about Solid State thermal storage?

Cheap Distributed High-7 Storage

Electricity prices

Higher $T \rightarrow$ higher energy density ~ 1 MWh_t/m³ Cheaper than batteries, more versatile than pumped hydro etc.

Thermo Photovoltaics (TPV)

Challenges for High Temperature Emitters: Performance Degradation

Diffusion driven

Solid State Low Temperature Thermal Storage

Cage Based Solid State Thermal Storage

Li Shi, UT Austin

SL PCM caged in graphite matrix. Courtesy of "All Cell Technologies, LLC". All Liquid Thermochemical Storage and Heat Transfer Fluid

Computational Chemistry for High Energy Density Storage

Condensed phase reversible chemical reaction

Preliminary Experimental Evidence

HYBRISOL: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

Grossman, MIT

Energy density similar to a Li-Ion battery

Building thermal management still relies on *linear* thermal concepts, 100s of years old.

Thermal Storage

ENERGY TECHNOLOGIES AREA

BERKELEY LAE

Nonlinear Thermal Elements

Dames *et al.* Review: "Thermal diodes, regulators, & switches: Physical mechanisms and potential applications" (2017).

ENERGY TECHNOLOGIES AREA

GRID Interactive Thermo-Electric Transistor: Active Control of Thermal Resistance

Dames *et al*. Review: "Thermal diodes, regulators, & switches: Physical mechanisms and potential applications" (2017).

Shape Memory Alloy Based Thermal Switch (Chris Dames, UC Berkeley)

Dry Cooling of Power Plants Using Thermal Storage

