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More than 90%06 of Energy Budget involves
Thermal Process
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Thermal energy iIs the dominant
component of our energy system
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Current System Architecture
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Integrated Energy Supply Systems (Prasher & Majumdar, ARPA-E HEATS workshop)
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Solar Exceeds 50% in CA but Price drops Below
Z€ero

California Independent System Operator net generation, March 11, 2017
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Thermal Storage to Store Electricity

High T thermal High T thermal
storage storage
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References: 1) https://x.company/explorations/malta/ 2) Prof. Robert
Laughlin, Nobel Laureate, Stanford University 8


http://www.isentropic.co.uk/our-phes-technology%202

Thermal Management Applications of Storage



Heating & Cooling is —50%b6 of Energy
Consumption in Buildings
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Thermal Storage In Building Walls

T

phase change

A typical 2000 ft? residential building can store an estimated 44 Ton-hours
(~150kWh,) of thermal energy. This is equivalent of 9 hours of storage assuming 5
ton of cooling.

Challenge: Tunable Transition Temperature
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« Heating/cooling of cabin can reduce driving range
of Electric Vehicles by 40%6

 Cold Start of IC vehicles increases fuel
consumption and GHG emissions
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Thermal Storage for ICV and EV
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Science and Technology Challenge

e Rellable and cost effective thermal
storage

°* Long distance transmission of thermal
energy
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HEATER

Highly Efficient Advanced
Thermal Energy Research

A U.S. Department of Energy initiative
leveraging the expertise of the National
Laboratories to achieve the full economic

potential of U.S. thermal energy



Aiming for Theoretical Limits

Thermal Energy Processes are atomic/molecular scale phenomena

Conduction

[

Phase change
heat transfer

Thermal Storage

Heat to electricity
(solid state)

High ~ 2kW/m?2-K ~1 GW/m?-K
(L=1m)

Low ~ 12 mW/m-K None
(50% of air)

~5-10 MW/m? 160 MW/m?

<1 MJ/kg None
(Gasoline ~ 40 MJ/kg)

~15-20% of Carnot Carnot

Prasher & Majumdar (to be published) 6



Harnessing molecular phenomena for
thermal processes
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Exploring the Limits of Thermal Conduction

Low High
Electrical Conductivity
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Nonlinear Thermal Transport: Enabled
by Materials Science

Transistor

High contrast switch with minimal hysteresis
 Phase transitions
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« Geometry
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Long Distance Thermal Transport and Storage:

Phonons to Chemical Bonds

H
i

| RN O o 3 ¥

Ldlabbaddaald

Thermochemical storage

=
=

bbbk d

—
(=1
-
=
—
=
—
=
o
—_
7
c
@
=
=
=5
v

Thermophysical storage

o=
=
st

S 11 1 G I it i LU
1 100 10,000

e
Y

Energy density (M}/m?)

@ Gas-phase organics ® Metal hydroxides © Phase change
© Dehydrogenation O Metal carbonates @ Sensible heat

(Gur, Sawyer & Prasher, Science, 2012)

Chemistry Challenges

Large entropy change in
condensed state

Tunable entropy change
Tunable activation energy

Large thermal effusivity



Other Challenges

Most thermal storage based on: Solid/liquid phase change or sensible liquid
heating

1) Leakage

2) Thermal expansion

3) Corrosion

4) Low specific heat of liquids

How about Solid State thermal storage?



Cheap Distributed High-7 Storage
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Thermo Photovoltaics (TPV)
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Fuel Flexible! ThermoPhotoVoltaics (TPV)

(Nuclear, waste heat,
natural gas, Thermal

Storage) Sunlight
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Challenges for High Temperature
Emitters: Performance Degradation

Selective Absorber Degradation

Photonic Crystal Degradation @ 800 °C
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Solid State Low Temperature Thermal

Storage

Hydrogen bond
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Cage Based Solid State Thermal
Storage

SL PCM caged in
graphite matrix.

Li Shi, UT Austin Courtesy of “All Cell
Technologies, LLC”.






Computational Chemistry for High Energy Density Storage

Diels—Alder reaction
.

Energy density Specific heat
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Preliminary Experimental Evidence

Specific heat capacity
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HYBRISOL: Hybrid Nanostructures for High-
Energy-Density Solar Thermal Fuels

Grossman, MIT
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Building thermal management still relies on
linear thermal concepts, 100s of years old.

Thermal Storage
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Nonlinear Thermal Elements
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GRID Interactive Thermo-Electric
Transistor: Active Control of Thermal

Resistance

Thermal Resistance

Electric Field

Dames et a/l. Review: "Thermal diodes, regulators, & switches: Physical mechanisms and potential
applications” (2017).



Shape Memory Alloy Based Thermal
Switch (Chris Dames, UC Berkeley)
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Dry Cooling of Power Plants Using
Thermal Storage

Heat removal with Enhanced Encapsulated
PCM and Asynchronously-Cooled Thermal
Energy Storage (TES)
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