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Catalysis e precise control of energy and matter
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Catalysis enables the modern world
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What is a catalyst?
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* Material that increases reaction rates, lowers activation barriers, improves selectivity,

reduces cost

* A few examples

* Nitrogen — ammonia (fertilizers & food)

* Plastics and polymer production

Energy

* Chemicals & fuels

* Flavors and fragrances

Intermediate(s)

Product(s)

Reactant
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Problems for catalysis

Processes with large carbon and energy foot-prints

Fossil fuel-derived electricity

Fossil-fuel derived hydrogen

CH, = 2H,+CO,

Coal/hydrocarbons > nH, + CO,

~10 tonnes CO, per tonne H,
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Ammonia

Extremely large energy
requirements

Consumes ~50% of all H,

Carbon footprint (420 Mt CO,)




Creating new processes with catalysts

Catalyst

____________________________________________________________________________________________________________
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Chemicals Hydrogen Ammonia
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Design flexibility N =|NATIONAL
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Catalyst development strategies
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Nanostructuring Supports Shape

Adsorbates Core-Shell
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Why nanomaterials? N=
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Ordinary materials can develop extraordinary properties in the nanoscale regime
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Gold Nanoparticles in Solution

Nano-scale size control

I:> - =

nanocomposix.com

Bulk gold: Inert, shiny, and
valuable

Gold Nanoparticle on CeO, Support

Adapted from Science 2012, 335, 317.
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“Accidental” ancient nanotechnology N=|ranona
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Nanoparticles have been around for a while...

https://www.britishcouncil.org/voices-magazine/nanotechnology-tiny-tech-massive-impact

“Medieval artisans discovered through alchemical
experimentation that adding gold chloride* to molten glass
resulted in a red tint, and adding silver nitrate turned the

”
glaSS yeIIOW. == https://www.sciencehistory.org/distillations/magazine/from-nanotech-to-
nanoscience
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The Lycurgus Cup: 4th-century Roman
glassware containing gold and silver
nanoparticles




Investigating ancient scientific curiosities N=[NATONAL
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. . Faraday’s “Beautiful Ruby Fluid”
 Michael Faraday systematically y Y

investigated gold chloride chemistry

» 1857: “... gold is reduced in
exceedingly fine particles, which
become diffused, produce a beautiful

ruby fluid”

by
it

Philosophical Transactions of the Royal Society of London, : Sy
lloidal gold - 107%

1857, 147, 145-181

Co

Gold Bulletin, 2007, 40, 267-269 Angew. Chem. Int. Ed. 2007, 46,
5480-5486
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* Gold particles had traditionally 7, 0.5
shown low reactivity. '3 + ALO,
°’8 041 |° s FeO,
5 = MgALO,
. £ 03 s+ SiO,
* 1987: Haruta first showed small > |4/ o TiO,
supported gold nanoparticles were 2 02f {"°
extremely reactive for CO oxidation? < |
he ]
» X-ray diffraction estimated ~5nm s 0.17 *¥™
partiC|eS ;3 000 i 7 4 szb —_—— 3‘0 v
O
» Larger particles were not as reactive diameter Au particles / nm
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Size Dependent Reactivity

Surface Free Energy

Minimizing Metal Sizes
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Size Dependent Reactivity \ e
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Minimizing Metal Sizes

Au (111) surface is featureless and smooth

Phys. Chem. Chem. Phys. 2012, 14, 2286-2291
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Size Dependent Reactivity \ e
T LSRRGSR

7 Single-atom
; . ©
'\\ib\
2
=
Gold Nanoparticle on CeO, Support L
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Minimizing Metal Sizes

Au (111) surface is featureless and smooth

Phys. Chem. Chem. Phys. 2012, 14, 2286-2291
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Size Dependent Reactivity \ e
T LSRRGSR

.t_'I A
, Single-atom
> " [ =}
' \ Su bnano:.-"
: &
[ ;
. = ."—.
Gold Nanoparticle on CeO, Support L
[
Science 2012, 335, 317. et
('
@ "
(‘-U’ 5
=
=
N
-
Minimizing Metal Sizes
Au (111) surface is featureless and smooth Sub-2nm Au and alloy nanoparticles
Phys. Chem. Chem. Phys. 2012, 14, 2286-2291 Kauffman et al. J. Phys. Chem. C. 2018, in press
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Size Dependent Reactivity \ e
T LSRRGSR
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7 Single-atom
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Gold Nanoparticle on CeO, Support L
Science 2012, 335, 317. § Single Au atom catalysts
18 Phys. Rev. Lett. 2012, 108, 216103.
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Minimizing Metal Sizes
Au (111) surface is featureless and smooth Sub-2nm Au and alloy nanoparticles

Phys. Chem. Chem. Phys. 2012, 14, 2286-2291 Kauffman et al. J. Phys. Chem. C. 2018, in press
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* CO, nanocatalysis
* Gold and copper

* Water splitting for carbon-free hydrogen and oxygen
* Moving away from precious metals

* NH; synthesis: the next big thing?
* Emerging examples and challenges
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General approach: electrochemical CO, conversion N = |NATIONAL
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Electrochemistry moves electrons

(=) (+)

— £

www.sciencewithme.com
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General approach: electrochemical CO, conversion N = |NATIONAL
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Use excess electrons to convert CO,

Cathode Anode

l Environmentally Benign
e Aqueous Solution
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Exemplary products

Approximate market price and global demand
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Global Production

Carbon Monoxide

(synthesis gas) 0.06-0.60
Methane 8 0.18
Ethylene 12 0.5-1.52
Methanol 6 0.58

Ethanol 12 1.00
Formic Acid 2 0.74

Ind. Eng. Chem. Res. 2018, 57, 2165-2177
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Exemplary products N=[avA
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Approximate market price and global demand

Global Production

Carbon Monoxide

Crowd (synthesis gas) LA
row
Favorites Methane 8 0.18 250
* Ethylene 12 0.5-1.52 140
Big * Methanol 6 0.58 110
news! * Ethanol 12 1.00 77
Formic Acid 2 0.74 0.6

Ind. Eng. Chem. Res. 2018, 57, 2165-2177
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Operating costs

Table 3. Process Assumptions for CO, Electrolyzer Model

~
A

% Ethylene parameter base case :' optimistic case !
production rate (ton/day) 100 i 100 i
n-Propanol lifetime (years) 20 ! 20 !
operating time (days/year) 350 | 350 i

1
* Ethanol electricity price ($/kWh) 0.05 ! 0.03 !
current density (mA/cm?) 200 : 300 i

1
* 1 1
Methanol [ water cell voltage (V) 2.3 | 2 :
I CO, Purchase product selectivity (%) 90 : 90 !
Formic acid [ ]PsA conversion (%) 50 ! 50 :
[ ] Distillation CO, price ($/ton) 70 : 40 |
. [ ] Maintanence _ [ [
% Carbon monoxide I Electrolyzer Electricity interest rate (%) 10 ! 10 !
f : : . . : electrolyzer cost ($/m?*) 1840 \ 920 /:'

0 20 40 60 80 100 Seooooeo oo

Operating Costs ($ thousands/day)

*under optimistic case assumptions.
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":D Synthesis gas ":';
(CO +H,)

co,

e e ————————————
7’

Water

~
H,+ CO
formic acid 6
methane el e T B — > Pur:iled
C,+ hydrocarbons product
alcohols

7
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Rough timeline of CO, electrochemistry N = |NATIONAL
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* Late 1980s through early 1990

* Most common metals were tested

* Au and Ag were selective for CO and H, (synthesis gas)
* Cu produced a variety of products, but not selective

* No metals were very active (bulk)

* For ~20 years CO, electrochemistry was “niche” topic in specialized journals

* 2008-present: NETL and the rest of the world started thinking about CO,
nanocatalysis

* | started at NETL in 2010 as a post-doc with the idea of using nanoparticles for CO,
electrochemistry

P22y U.S. DEPARTMENT OF
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Can we control structure and function?

TL

* Molecular Binding Impacts: energy input, reaction rates, efficiency, selectivity and stability *

Sabatier Principle

“Just Right”
*

N
LAY
/ \
/ \
/ \

/7 \
Too weak 7 . Too strong
\

Performance

~
-
\4
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Typical materials contain a mixture of shapes,
sizes and “colors”. Hard to identify which
“piece” is doing what.




Can we control structure and function? N =|NATIONAL
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* Molecular Binding Impacts: energy input, reaction rates, efficiency, selectivity and stability *

Sabatier Principle Can we build well-defined nanocatalysts to
understand and eventually control chemistry?

“Just Right”
*

N
LAY
/ \
/ \
/ \

/ \
Too weak 7 . Too strong

Performance

~
-
v

Adsorbate Binding Strength
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Controlling function through structure N=|NAToNAL
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* Copper oxide nanocatalysts with organic surface groups
* Controlled size and retained surface oxides

* Improved activity and selectivity — more “gold-like” than copper!

* Surface groups sustained oxides and directed CO, to CO conversion

CuO NPs : :

'
E 3 Cu,O NPs
(3]
< Bulk CuO
£ Bulk Cu,0
2 24
>
©
<
Q
— 14
5
8
8 . 10mvs"’
~10 nm CuO NPs 04 02 00 -02 -04 -06 -08 -1.0 -1.2

Electrochemical Potential (Volts)
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Atomic-level control of gold nanocatalysts N=|NATONAL
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Surface organothiol groups create precise atomic structure and influence chemistry

Au,.(SR),s Nanocluster

—_ —— 1 nm Auy
~N 2 50 -
£ — 2 nmAu particles
o
OH E 40 —— S5 nmAu particles
®C - —— Bulk Au
c
@0 g 30
3
® s &
o 204
O Au n(:u
5 10+
scan
direction
0

00 02 04 06 08 -0 12 -4

. Electrochemical Potential (Volts
Extremely active for CO, = CO (Volts)
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Atomically engineered nano-alloys

Gold-Copper Nanocatalysts

Au @s ®cu OH

Improved performance with ~50% reduction in gold

** Just accepted and chosen for JPCC Cover! **
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*COOH+H" +¢e

co(g)

CO,+2H" + 2¢” *CO
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CO,RR Coordinate
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Coming full circle: Back to copper N=|NATONAL
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Ww-9-@

3D opal template Precursor@opal
(200 nm PMMA colloids on substrate) heterostructure

Cuo(110) -
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Selectivity and activity rivaling gold NATION
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Almost no H, below -1V , minor CH, and HCOOH, trace C,
100 i
CuO-HIO < copper oxide peaks
Qo .~
sl g:ﬁ SESO e é = reduced copper metal peaks
2 JEN L & - o8
— N e —_— =) =
[5] = | AW ¥ *
% 40 F % ’le 360 min
» € 180 min
8 = # v b% 120 min
70 min
20 B 1 *
30 min
d V A 20 min
-1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 5 5 7 5 9 10 T
2-theta/°

Potential / V vs. RHE
\ J

I

* ~8x more selective than commercially available CuO powder
* ~10-60x more selective than commercially available CuO nanoparticles
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The field has exploded! N=|NATIONAL
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Invited topical review in 2017

“Electrochemical Carbon Dioxide Reduction at Nanostructured Gold, Copper, and Alloy Materials”

Named "Best of 2017“ in Energy and Technology

800 *
700

600

500 “Electrochemical CO,

Reduction”
400 -

300

200

Publications (Web of Science)

100

O 111 T

T T T T T 1
1980 1985 1990 1995 2000 2005 2010 2015 2020

Year
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Other studies in gold vs surface structure N=|NATONAL
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Gold Nanocatalysts of all shapes and sizes e [T ONAL
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Theory catches up

06
0.4
0.2

Au CO,RR

'+C02

*COOH

*CO +H,0 *+CO

Approaching computationally-lead
predictive catalyst design

0.8

0.6

0.4

G (eV)

Corner
Facet

Au HER
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N =55 N =309

Il ‘co=co,
[l CO,+H"+e = *COOH

3 13
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“Endless” possibilities in structural control
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N
Nanoparticles can be synthesized in a dizzying array of shapes, sizes,

crystallographic orientations, etc.

U.S. DEPARTMENT OF
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Emerging Nano-needles

TL

Electric Field

Gold Nanoneedles: excellent CO selectivity and activity
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x108 (V/m)
4.0

Copper Nanoneedles: improved ethylene selectivity and activity
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* Activity (still less than water electrolyzers)
* Selectivity (H, evolution still a problem)
* Reduced precious metals

* Longevity

%% U.S. DEPARTMENT OF
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Water splitting for H, and O, production N= My
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Current (e’) Current (e)

o —
N\

OER HER
O 2H
2 2
JT )
Ao+ 4H 4H** de
ZHEO
Anode Membrane Cathode

separator
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Water splitting for H, production
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Expensive metals are best

10-1§ v T ) T . 1 L) T . T v T v T :

107 TR 3

10° o/ og .

45 Re ' Pd § 8/.'Ir )

<107 “\_ Rh /) :

5 E "~----"MoS s

S 10°: o s’ cu 1

3 -6§ W Co6 (e} Au ©

~ 107+ © Au(111) 1

107 mwo M © :

5 Ag

107+ © 3
08 -06 -04 -02 00 02 04 06 08

AG,,. (eV)

Science 2007, 317, 100-102
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HER overpotential /mV

Platinum | -
2005 2010 2015

J. Phys. Chem. Lett., 2015, 6, 951-957
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Nanostructured nonprecious catalysts

Mos,

Metal phosphides

0.4
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0.2 Pl
4
01 ]
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MosS, edge length (nm, .,/nm; )
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Expensive metals are still best Emerging trends in mixed transition metals
(@ 0.0
I '.a'0'0"--:-----:-----:-----:-----:--—
w Ru(\}‘ 5
I‘o' 1 <
" Co,0 oS3 ptd £ 02} WO/SHrDs
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2 0.4 ~ H S 04} \ LaNiO,
e e » = NiO, , LaFe0, (1)
,'0 "‘ - IrOQ, (100) . Seoo- |'_’a':e03 (TT)
~ é E=] ! Ir0, (110) LaMnO,
06| FeO9” PbO, } g0 o,
| ! E | g
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“Atomically Precise” O, evolution By
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Combining Electrochemistry and Surface Science N=|NATIONAL
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2 510" Fe Loading (mol cm'z) Low Nanostructured iron outperforms iridium
) Loading
—2.0x10"° ‘ 250,000+
¥ e —3.1x10"° ’ Fe,0, (2.0x10™ mol cm?)
g .0x10° 7 85101 IrO, (2.0x10™" mol cm™)
= ——12.0x10™ 73 2000001
£ i —17.6x10™ g
> ——23.4x10™ T 150,000
= ———29.0x10™ e
g 1.0x10% 2
% 2 100,000+
‘Eu o
5.0x10* 1 : S
High 50,000
Loading
0.0 . . ’ . : :
1.2 1.3 1.4 15 1.6 1.7 1.8 0 : : - = . .
i} ) B i 1.2 1.3 1.4 1.5 1.6 1.7 1.8
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Ammonia: the next BIG thing? N = |NATIONAL
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* Fertilizer
* Huge market, huge energy requirements, huge carbon foot print

* Energy storage
* Use NHj; directly as fuel
* Convert into H, for end use application

* Air separation
* Can we remove N, from air streams zza catalysis?

e Modular

* Can electrochemistry reduce the energy requirements and size?
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Recent Ammonia Progress

Metal nanoparticles and nitrogen-doped carbons show some activity, but very low efficiency
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Recent Ammonia Progress N=
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* Carbon nano-needles electrochemically convert N, into NH,
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e Currently: Small scale, Low activity , Faradaic Efficiency < 12%; Energy Efficiency less than 5%

* Haber Bosh ¥55% Energy Efficiency at industrial scale; high pressure, large infastructure

Sharp tips seem to help
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“Single-site” Au catalysts on TiO, 8% Electron Efficiency; 0.4 mA/cm? current density

Au

Adv. Mater. 2017, 29, 1606550
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Ammonia: the challenges N= [NTIONAL
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* Challenges with electrochemical ammonia synthesis
(1) Selectivity

(2) Efficiency

(3) Reaction rates (current density)

* Fundamental studies to address structure vs. function

F7%%, U.S. DEPARTMENT OF
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Concluding thoughts N=|ManonaL
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* We’ve learned a lot about controlling nanoscale structuring and function

* Direct these lessons towards challenging energy-related problems

* Still much to learn and accomplish
* fundamental studies linking structure and performance
* improve activity, efficiency, stability, etc.
* modular reactors, intermittent operation
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Thank you for your attention!
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