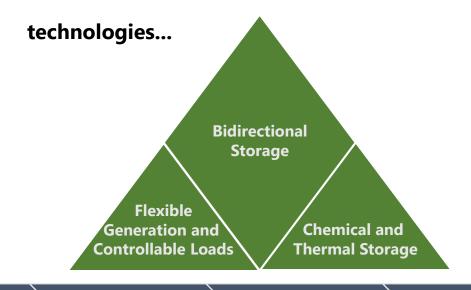
U.S. DEPARTMENT OF ENERGY
Energy Storage Grand Challenge

Pacific/Northwest Regional Workshop

MAY 20, 2020

Energy Storage Grand Challenge Overview

Alejandro Moreno


Office of Energy Efficiency and Renewable Energy
U.S. Department of Energy

ESGC Vision, Mission, and Scope

DOE-wide strategy to accelerate US leadership in energy storage technologies

Coordinated across DOE:

...offices...

- Office of Electricity
- Energy Efficiency and Renewable Energy
- Office of Science
- Office of Technology Transitions
- Nuclear Energy
- Fossil Energy
- ARPA-E
- Loan Programs Office

...and functions.

Basic Science Research & Discovery

Application Driven
Materials
Development

Applied Device and System R&D

Cost & Performance Metrics, Targets Demonstration and Performance Validation

Systems Analysis and Valuation

Commercialization Strategy

ESGC Focus Areas

Five tracks to achieve US leadership in energy storage

Technology Development

 Establish ambitious, achievable performance goals, and a comprehensive R&D portfolio to achieve them.

Domestic Manufacturing and Supply Chain

 Design new technologies to strengthen U.S. manufacturing, recyclability, and reduce dependence on foreign sources of critical minerals.

Technology Transition

 Accelerate the technology pipeline from research to system design to private sector adoption through rigorous system evaluation, performance validation, siting tools, and targeted collaborations.

Policy and Valuation

 Develop best-in-class models, data, and analysis to inform the most effective value proposition and use cases for storage technologies.

Workforce Development

 Train the next generation of American workers to meet the needs of the 21st century grid and energy storage value chain.

Welcome and Opening Remarks

Jud Virden

Associate Laboratory Director Energy and Environment Directorate Pacific Northwest National Laboratory

Questions

Please submit your questions in the Chat box to the host. Reference the speaker or topic.

Keynote

Ann Rendahl

Commissioner
Washington Utilities and
Transportation Commission

WA Clean Energy Transformation Act

Clean, Affordable, Reliable, Equitable

2025: Eliminate coal from retail portfolios

2030: Greenhouse gas neutral standard

- At least <u>80 percent</u> of electricity delivered to load must be renewable or non-emitting
- Alternative compliance options for up to 20 percent

2045: 100 percent renewable or non-emitting retail electricity supply

UTC Storage Policy Statement

Recommendations:

- Sub-hourly modelling of benefits over useful life of asset
- Publicly available, nonproprietary models
- Accurate and up-to date costs
- Evaluate a range of available technologies

BEFORE THE WASHINGTON STATE UTILITIES AND TRANSPORTATION COMMISSION

In the Matter of the Washington Utilities and Transportation Commission's Investigation into Energy Storage Technologies. DOCKETS UE-151069 AND U-161024

DRAFT REPORT AND POLICY STATEMENT ON TREATMENT OF ENERGY STORAGE TECHNOLOGIES IN INTEGRATED RESOURCE PLANNING AND RESOURCE ACQUISITION

I. INTRODUCTION AND PROCEDURAL BACKGROUND

On May 18, 2015, regulatory staff of the Washington Utilities and Transportation Commission (Commission) initiated a staff investigation into the role of energy storage in electric utility planning and procurement. Commission Staff (Staff) initiated the investigation based on a Staff white paper that identified barriers to energy storage created by the way that Washington's investor-owned utilities modeled such technologies in their integrated resource plan (IRP) documents.

Questions

Please submit your questions in the Chat box to the host. Reference the speaker or topic.

Panel 1: 2030 Goals and Vision

Moderator

Clay Koplin, Cordova Electric

Panelists

- Larry Bekkedahl, Portland General Electric
- Kevin Woolfolk, Salt River Project
- Curt Kirkeby, AVISTA
- Chris Yunker, Hawaii State Energy Office
- Daniel Schwartz, University of Washington

ESGC Vision & Goals: Ground View

Utility Perspectives on 2030 Energy Storage (ES) Targets:

- How can ES support new suites of services for customers?
- How can ES facilitate intermittent renewables and dispatchable loads?
- What are some of the off-grid applications for ES?
- What technology advancements does industry need from ES?
- What are some of the novel and emerging application for ES?
- How can ES support beneficial electrification for heat/transportation?

PGE – Battery Programs

Resiliency Meets Flexibility

- Decarbonize
- Electrify Improve integration of renewables
- Defer investment in generation, transmission, and distribution
- Improve grid reliability and flexibility

Category	Service
Bulk Energy	Generation Capacity / Resource Adequacy
Ancillary Services	Regulation Load Following Spinning / Non-Spinning Reserves Voltage Support Black Start
Transmission Services	Transmission Congestion Relief Transmission Upgrade Deferral
Distribution Services	Distribution Congestion Relief Distribution Upgrade Deferral Volt-VAR Control Outage Mitigation
Customer Energy Management Services	Power Reliability Time-of-Use Charge Reduction Demand Charge Reduction
Primary Control	Frequency Response UFLS

Storage Activities Underway

2030 GHG targets require storage across the Grid

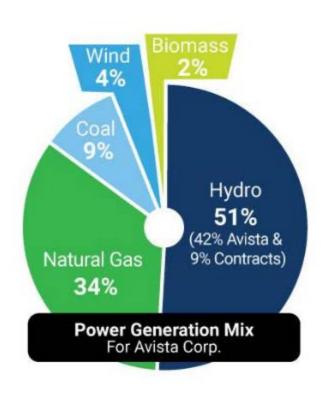
- Generation
- Substation
- Mid-Feeder
- Micro-Grids
- Residential
- Fast Charging Stations

SRP's Storage Plan

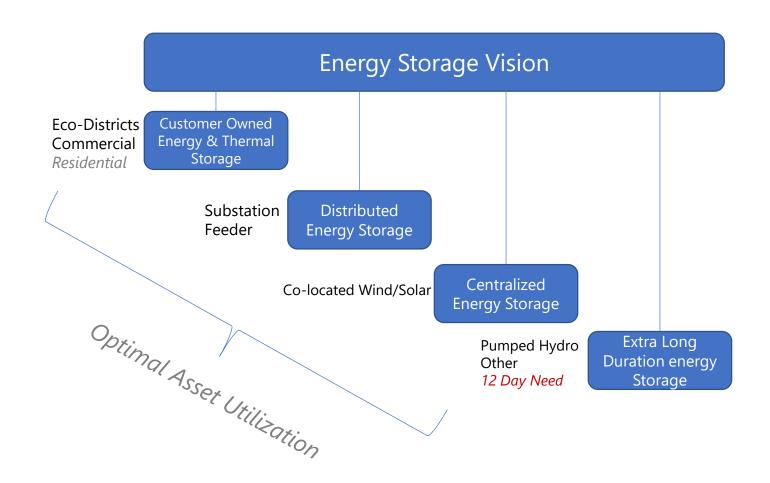
Beyond the current 20MW/80MWh online.....

- Tesla standalone grid-charged BESS 25MW/100MWh (May 2021)
- Sonoran Energy Center 250MW solar + 250MW/1,000MWh BESS (June 2023)
- Storey Energy Center 88MW solar + 88MW/264MWh BESS (June 2023)

SRP Storage Considerations

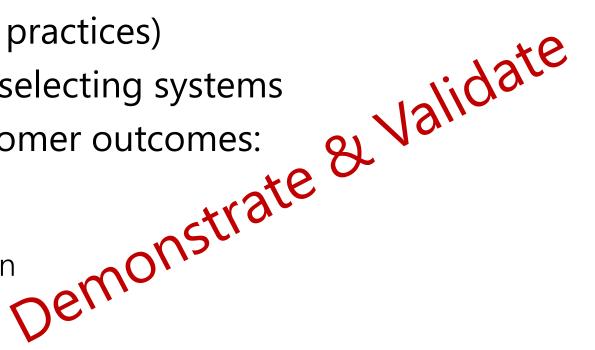

Benefits

- Allows increased renewable integration.
- Helps us meet sustainability/carbon goals.
- Can be cost effective against traditional generation options.


Challenges

- Diminishing capacity contribution with increasing installations.
- Longer duration seems inevitable, but at what cost?
- Reliability and useful life.

Avista Utilities Vision



Carbon Neutral by 2027 Carbon Free by 2045

Avista - Grand Challenge Needs

- Safety, reliability, and testing (best practices)
- Valid nameplate specifications for selecting systems
- Interoperability for utility and customer outcomes:
 - Reliability/backup
 - Grid edge optimization
 - Micro-grid optimization and formation
 - Load management
 - Power quality
- Accurate, inclusive valuations to incent investment

Value Proposition for Storage Integrating Resiliency into Planning

- One of the main priorities after a storm will be to get the Critical Customers back on line.
- The CCC concept is a variant of a Micro Grid concept:
 - More cost effective than installing permanent generation.
 - Maintains greater flexibility.
- The CCC is a grouping of several neighboring critical customers.
- The key is to ensure CCCs get power as soon as possible.

Critical Community Cluster (CCC)

Valuing Storage Measuring Resiliency

- Utilities need metrics by which to compare alternative resource portfolios on resiliency
- This will require guidance on priority customers and performance expectations

Resilience Measures and Composite Index

Resilience index measures how well a resilient grid performs under proposed severe threat scenarios. It is used to make comparisons among various strategies and options. The index is not a utility target or requirement - simply a measuring device to compare how well different solutions perform under severe circumstances.

- Resilience Index (Sample Index Weighting) Shown)
 - Percent of Tier 1 customer sites that lose offsite power day or less (25%)
- Percent of Tier 3 customer sites that offsite power 3 days or less (15%) Percent of Tier 3 customers that lose offsite power 14 days or less (4000) Percent of Tier 3 customers that lose offsite power 14 days or less (4000) ose offsite power 3 days or less (15%)

 - Percent of Tier 2 customer sites restored within 7 days days (15%)
 - Percent of tier 3 customers restored within 28 days (10%)

Customer Sector Need vs Capability

Even the most capable sectors are limited to 1 week or less without refueling

Sample Score Card Summary of Portfolio Options

Crit	Criteria Affordability		Resilience	Sustainability			
Port	tfolio	2020-2030 Cost NPV (\$Mil)	2020- 2040 Levelized Cost (2019 \$/MWh)	Cost Rating Score	Resilience Composite	CO ₂ Changes from (%)	Renewable Generation As % of Load (%)
Status Quo					~I\	ノヒ	
Portfolio 1					2 1 1 1	4	
Portfolio 2				、イト	Kr.		
Portfolio 3			115	, i c			
Portfolio 4		11 1	C				
Portfolio 5		10-					
Portfolio 6							
Portfolio 7							
Portfolio 8							
Portfolio 9							

Electric Aviation – Observations

Daniel T. Schwartz, UW

World's first fully electric commercial Guardian aircraft takes flight in Canada

Both events happened on Dec. 10, 2019

5 distinct aviation energy storage segments

- Drone Cargo (eVTOL, cargo)
- Air Taxi (eVTOL, 4 6 PAX)
- Light Haul Commuter (eCTOL, ≤19 PAX)
- Regional (hybrid CTOL, ≤60 PAX)
- Airliner (hybrid CTOL, ≤200 PAX)

Electric Aviation – Observations

Daniel T. Schwartz, UW

Light duty EV vs. Light Haul Commuter

USABC Goals for Low-Cost / Fast-Charge Advanced Batteries for EVs - CY 2023

Units	Cell Level	
W/L	1400	
W/kg	700	
W/kg	300	
Wh/L	550	
Wh/kg	275	
kWh	50	
Years	10	
MWh	50	
\$/kWh	75	
°C	-30 to +52	
Hours	< 7 Hours, J1772	
Minutes	80% ΔSOC in 15 min	
	W/L W/kg W/kg Wh/L Wh/kg kWh Years MWh \$/kWh °C Hours	

Electric Aviation – Observations

Daniel T. Schwartz, UW

Light duty EV vs. Light Haul Commuter

USABC Goals for Low-Cost / Fast-Charge Advanced Batteries for EVs - CY 2023

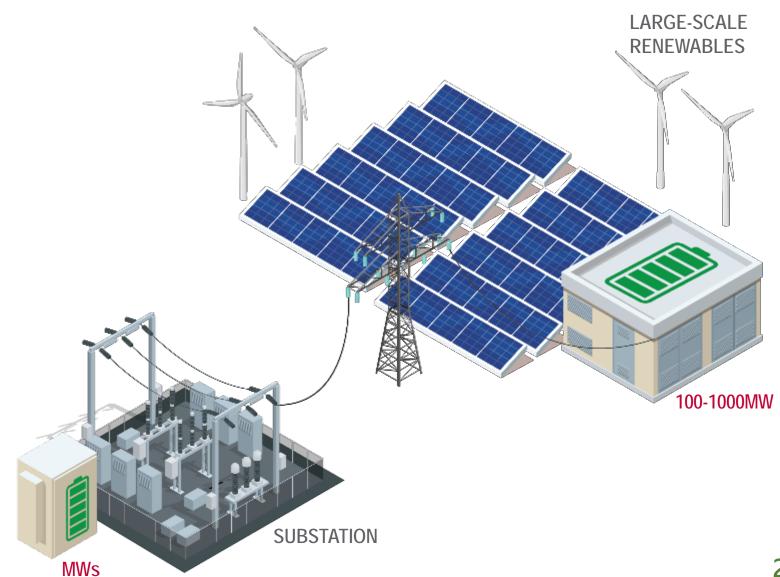
End of Life Characteristics at 30°C	Units	Cell Level
Peak Discharge Power Density, 30 s Pulse	W/L	1400
Peak Specific Discharge Power, 30 s Pulse	W/kg	700
Peak Specific Regen Power, 10 s Pulse	W/kg	300
Useable Energy Density @ C/3 Discharge Rate	Wh/L	550
Useable Specific Energy @ C/3 Discharge Rate	Wh/kg	275
Useable Energy @ C/3 Discharge Rate	kWh	50
Calendar Life	Years	10
DST Discharge Throughput, Discharge Energy	MWh	50
Cost	\$/kWh	75
Operating Environment	°C	-30 to +52
Normal Recharge Time	Hours	< 7 Hours, J1772
Fast High Rate Charge	Minutes	80% ΔSOC in 15 min

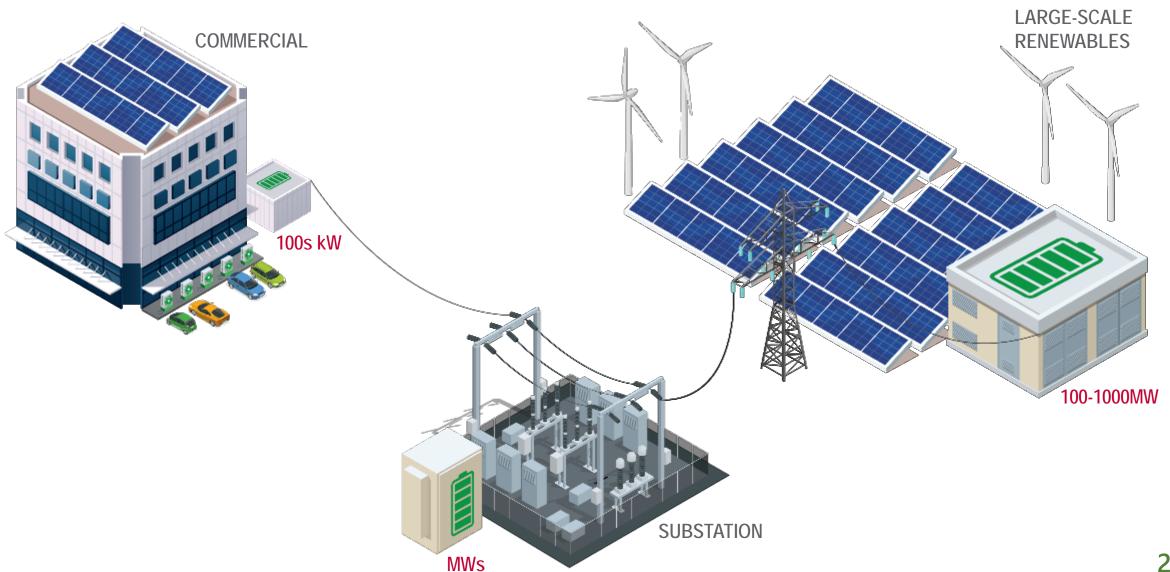
Aviation Energy Storage Metric (Pack)	Light Haul Commuter 5 year goals	
Peak specific discharge power, 90 sec pulse	3E discharge rate @ 20% SOC; Note [1]	
Useable specific energy density @ 1E discharge	>300 <u>Wh</u> /kg	
Useable energy @ 1E discharge	Aircraft and market specific	
Discharge throughput (MWh)	(n years)*(annual <u>MWh</u>); Note [2]	
Shelf life	1 calendar year	
Operating Temp (°C)	May be controlled.	
Normal Charge Time	50% < ΔSOC < 70% in 30 minutes	
Reserve Capacity	30% of energy; Note [3]	
Cell-to-pack overhead on energy density	10%	

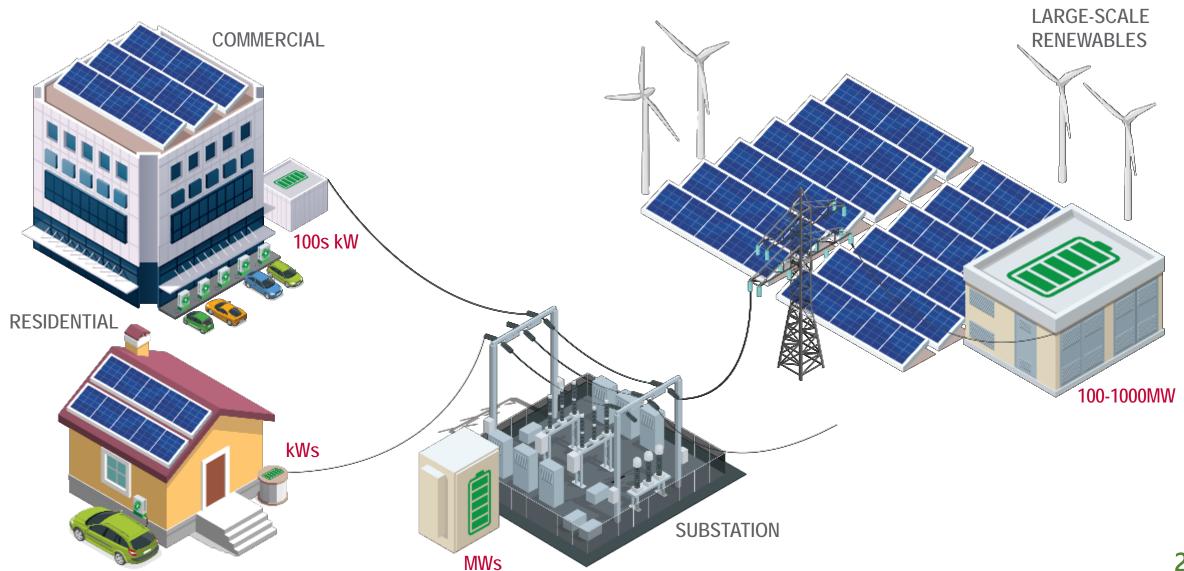
Questions

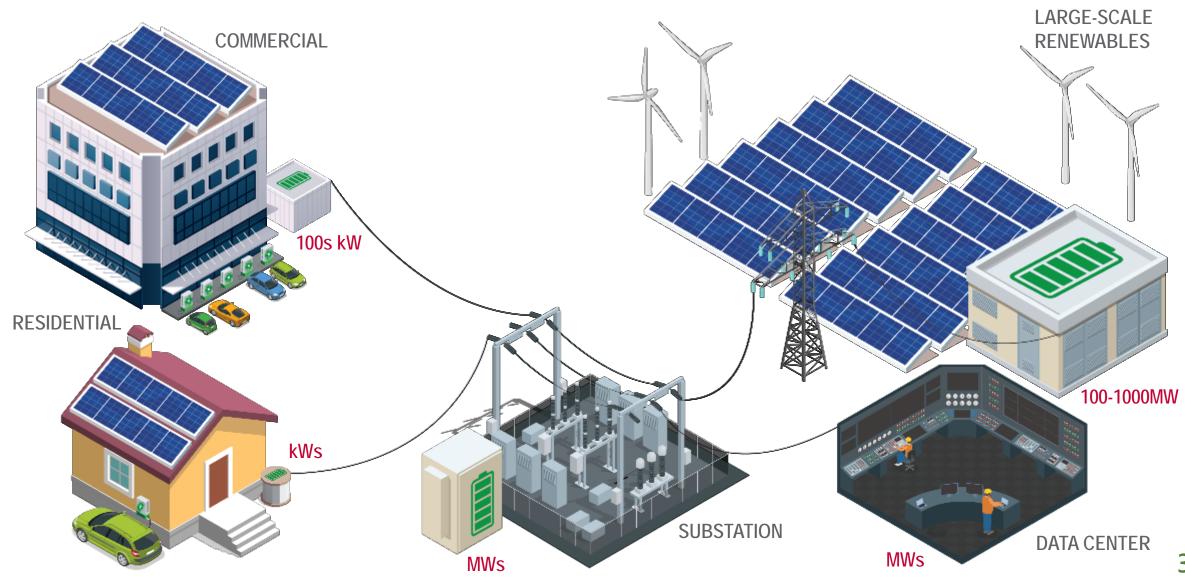
Please submit your questions in the Chat box to the host. Reference the speaker or topic.

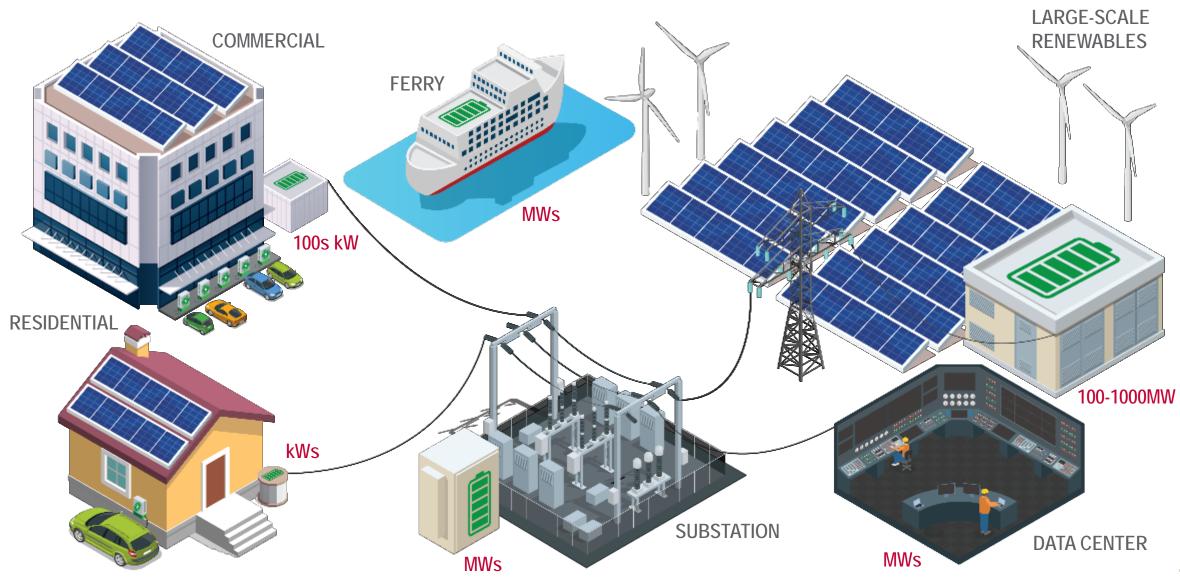
Panel 2: Enhancement to Regional Operations and Flexibility

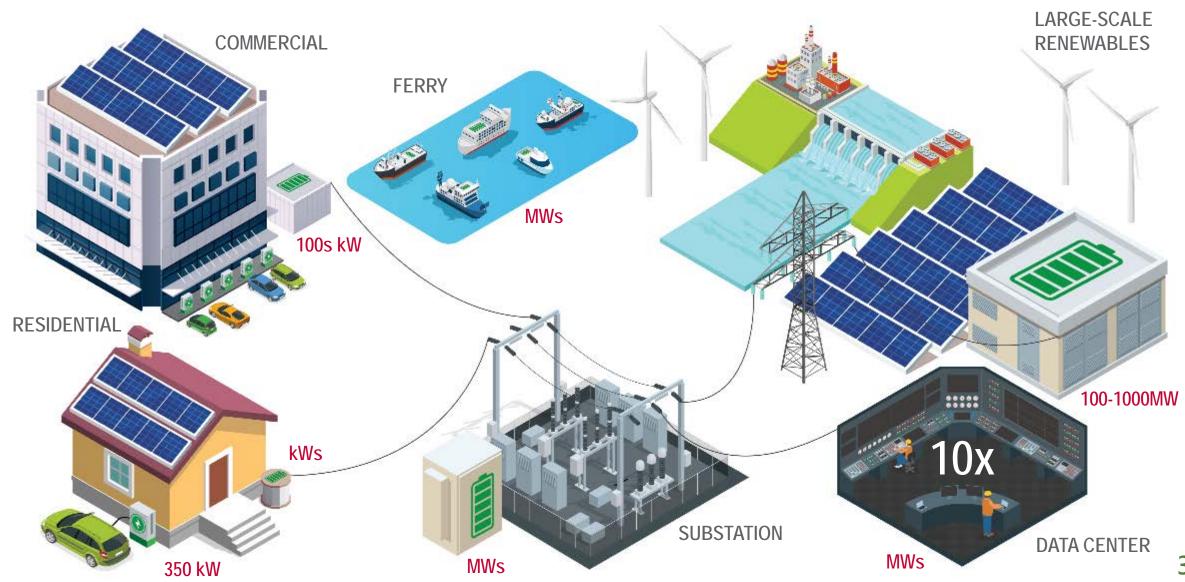

Moderator

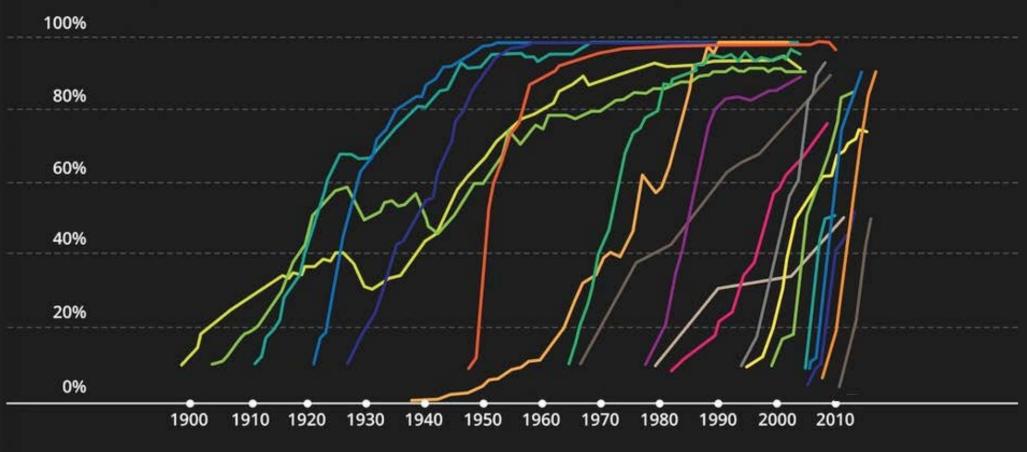

Angela Becker-Dippmann, PNNL


Panelists

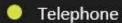

- Uzma Siddiqi, Seattle City Light
- Mark Monroe, Microsoft
- Russell Guerry, OPALCO
- Matt S. Von Ruden, Washington State Ferries
- Jennifer States, DNV GL Energy Insights USA







Adoption of Technology in the US



Electricity

Cars

Radio

Refrigerators

Television

Air Travel

Color Television

Credit Card

Microwave

Video Games

PC

Cell Phone

Internet

Digital Camera

MP3 Player

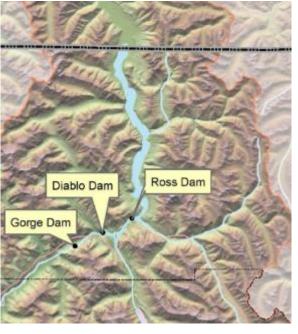
HDTV

Social Media

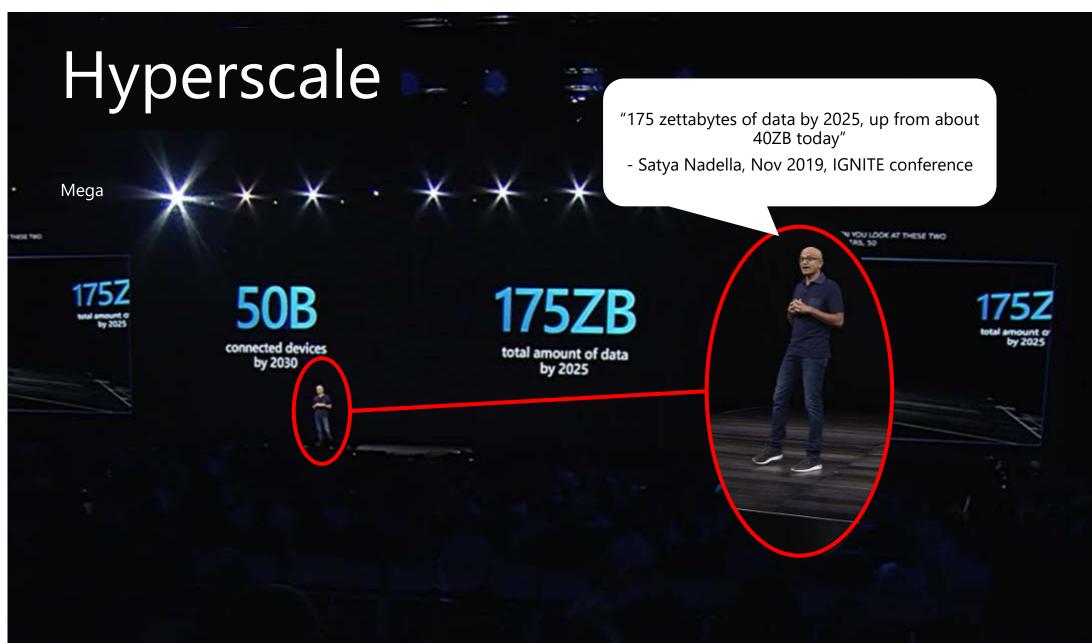
Smartphone

Tablet

Seattle City Light

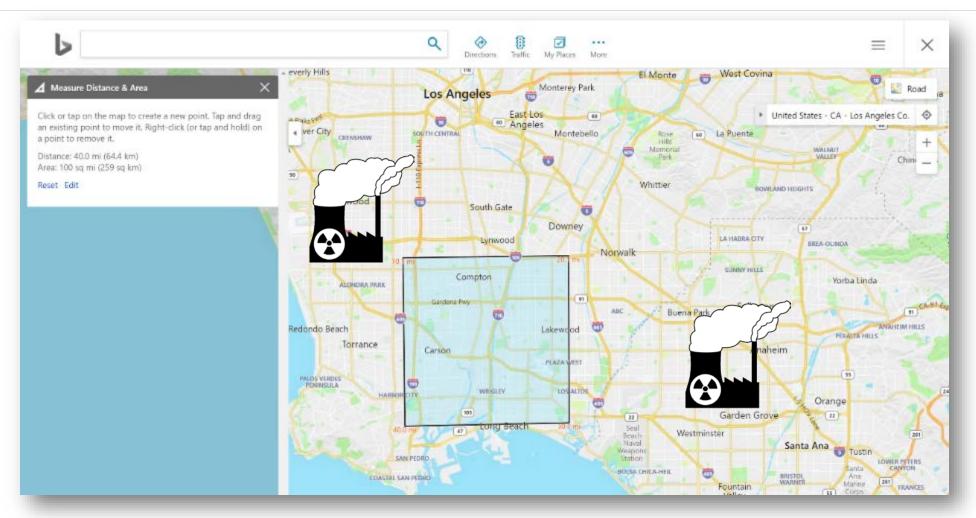

Beyond Li-Ion and Diesel...

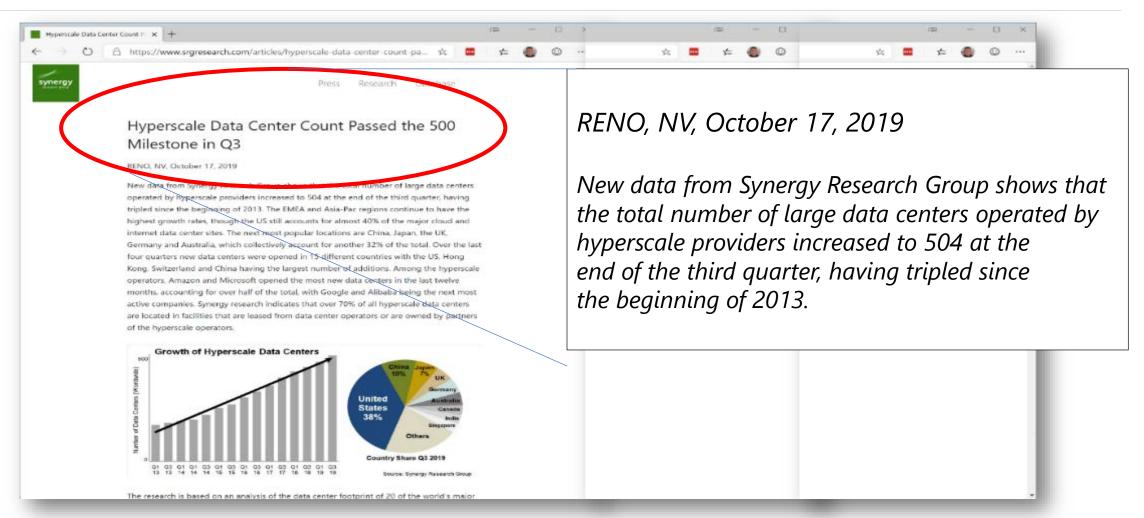
Existing


- Utility owned BESS Li-Ion 200kW/800kWh at Microgrid
- Residential customer batteries (planning for IEEE 1547-2018)
- Diesel generator backup

Future Vision

- BESS to delay Distribution system upgrades
- Energy Storage/Infrastructure
- Pumped Storage project at Skagit dams
- Advantageous Business Models (customers and grid)





105 sq mi, 2,016 MW (...just storage)

~24 Hyperscale Companies, 500+ D.C.

1 MW x 24 hours = 2,000 kg H2 30 MW x 48 hours = 100,000 kg H2

Orcas Power & Light Cooperative

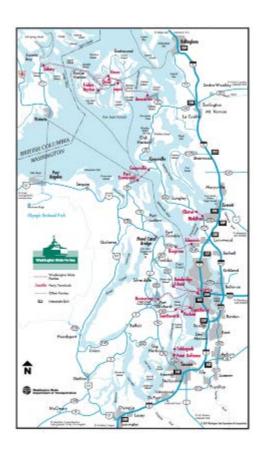
Serving the San Juan Islands since 1937

San Juan Islands is a unique rural territory serving over 20 islands (14,700 services) in Washington.

Energy Storage benefits:

- Outage Mitigation for Critical Infrastructure/Remote Island
- Submarine Cable Replacement Deferral
- Further allowance of intermittent renewables

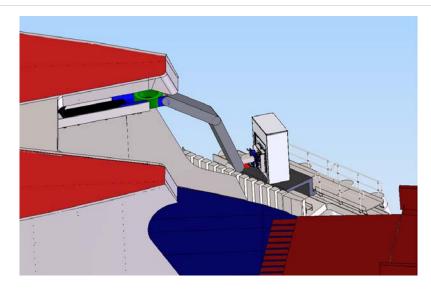
Future Vision:


- Tidal Generation
- Vehicle-to-Grid Integration
- Distributed Storage and other resources

WSF System-Wide Electrification Plan

Addition to 2040 Long Range Plan

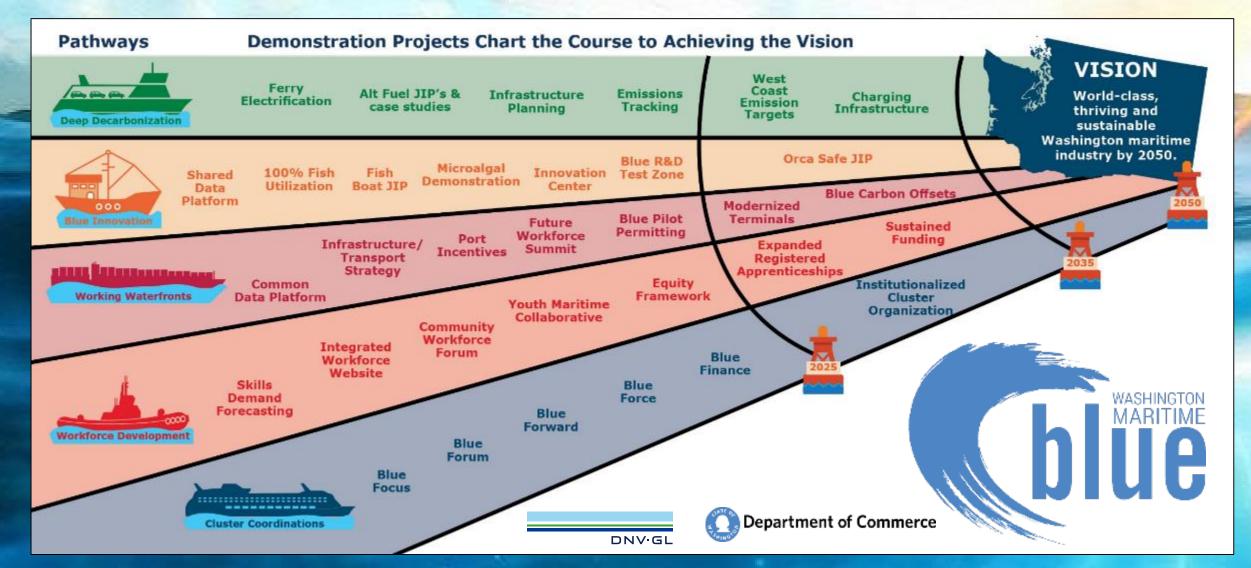
- Technology Assessment
- Vessel Requirements & Feasibility Analysis
- Terminal Requirements & Feasibility Analysis
- Construction Project Schedule
- Workforce Assessment
- Financial Model
- Emissions Impact Estimate



Designs in Progress

Jumbo MKII Conversion

- 1st Vessel Commissioned in 1997
- 460 ft long, 202 Vehicle capacity
- 3 vessels, 2 routes
- 2 of 4 Diesel Generators Removed
- 6.3 MW-Hr of Energy Storage Installed
- 5 Million Gallons/yr Fuel Savings

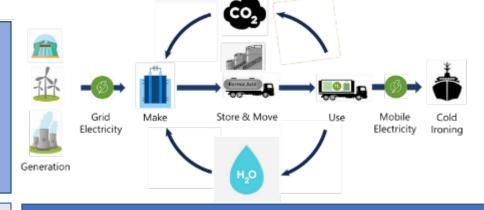

Rapid Charging System

- 12.4 KV
- 15 MW Maximum Charging Power
- 20 Minutes Charging Time
- 20 ft Tidal Range
- Minimal Over-Water Construction

Olympic Class New Build

- Original 4 Vessels Diesel-Mechanical
- 5 vessels, 2 routes
- New Propulsion Design DC Grid
- 12 MW-Hr of Energy Storage Installed
- 5 Million Gallons/yr Fuel Savings

Washington Maritime Blue - from Strategy to Implementation


Example Joint Innovation Project (JIP)

Scaling a Zero-carbon Green Hydrogen Maritime Ecosystem: Mobile Cold Ironing through Formic Acid Storage Pathways

CHALLENGE

Alternative fuels and energy are needed to reduce emissions from transportation and port operations. Hydrogen shows great promise, if it can be generated at scale in our region from renewable energy, as well as stored and transported in a safe manner. Tacoma Power has excess clean hydropower generation that can be utilized to make Green Hydrogen. They also need to provide energy for cold ironing services to berthed vessels, which have large variances in power demand and timing.

SOLUTION

- Build and scale a Maritime hydrogen ecosystem through a project at the Port of Tacoma that demonstrates a port-based hydrogen (H₂) solution utilizing Formic Acid for lower cost and safer storage and movement.
- Tacoma Power will provide the green electricity, primarily from hydropower, and is 97% carbon free. They will also be the end user of the H₂, to generate energy on demand for mobile cold ironing (shore power) to berthed vessels.
- The demo features a system that creates a liquid H₂ carrier, Formic Acid, directly from renewable electricity, water and recycled CO₂. This unique technology is provided by OCO Inc., whose electrolyzer technology creates the Formic Acid and PNNL, who provides the reformer technology to decompose and release H₂ from formic acid as needed.
- DNV GL will provide techno-economic modeling so this demo can be used as the anchor for scaling-out hydrogen use in other maritime applications like H₂ fueling for trucks, trains, vessels and a wide variety of cargo handling applications.

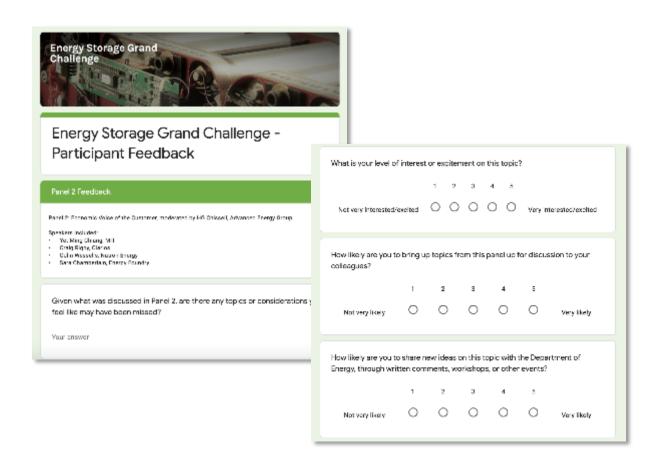
VISION

Regional collaboration to make Tacoma, WA the production and distribution nerve center for scaling up the use of clean hydrogen for port and maritime applications.

BENEFITS

This approach provides a large-scale local production and use for Hydrogen in maritime ports that can be stored as a liquid carrier in the form of Formic Acid, overcoming some of the key storage and movement challenges. This demonstration has the potential to show ports, utilities, and numerous maritime endusers what can be achieved when H₂ is used at scale.

Questions


Please submit your questions in the Chat box to the host. Reference the speaker or topic.

Workshop Feedback Form

After this workshop, we invite you to share your additional thoughts and comments about the presentations you heard today. This may include additional questions, concerns, considerations, or suggestions for the Department of Energy.

This is an opportunity to provide us with feedback on how interesting and relevant the material from the panels were. You are also able to opt-in to be involved in future Department of Energy events.

The link is available through the chat function in WebEx.

Wrap Up

Michael Furze

Assistant Director, Energy Division Washington State Department of Commerce

Thank you.

Our next workshop:

Midwest/Northeast Regional Workshop, May 27

For more information, visit: https://www.energy.gov/energy-storage-grand-challenge