

Chromium Groundwater Remediation Campaign

Presentation to the Citizens' Advisory Board

March 26, 2014

LAUR 14-21884

Presentation Overview

- What is the chromium groundwater remediation campaign?
- Background
- Nature and extent
- 2013 activities and results
- Path forward

Chromium Groundwater Remediation Campaign

- Accelerated project to address chromium contamination in groundwater
 - √ Bias towards action
 - Goal-oriented
 - Establishes key schedule milestones for remediation goals
 - Active engagement with regulators and stakeholders

Chromium Plume

Chromium Fate and Transport

Conceptualized pathway TA-3 power plant cooling towers 1956 - 1972~54,000 kg Source (inactive) Plume beneath Mortandad Canyon Infiltration in subsurface Sandia Canyon pathway

Sandia Canyon Wetland

Sandia Wetland Grade Control Structure

Buried sheet piling controls stream gradient Prevents erosion

Engineered "drop" from wetland surface to channel

Nature and Extent in Regional Aquifer

Monitoring data from several wells along plume periphery show increasing trends in Cr

Distribution of Cr6+ and Cr3+

- Natural processes have converted much Cr6+ to stable, non-toxic Cr3+
- Important to understand distribution and form of Cr mass to guide remedial actions

2013 Field Activities

Objectives:

- 1) Collect hydrologic data to support optimization of mass removal in centroid
- 2) Evaluate the potential for mass removal from the perchedintermediate zone

Aquifer tests at existing monitoring wells

- R-42
- R-28
- SCI-2
- Capture zone analysis in centroid (high mass area)
- Characterize behavior of contaminant concentrations during pumping
- Source removal

Treatment of Pumped Water

Evaluate efficiency of treatment system

R-28 or R-42

Required to meet land-application criteria

LANL Groundwater Chromium Treatment System

Well Housing

Ion Exchange Vessels

Holding Tanks

Sampling

Pressure responses

- Most wells responded to the extended aquifer pumping at R-28 and R-42
- Pumping at R-42 produced pressure responses only at 1 nearby well
- Pumping at R-28 produced pressure responses a most wells within the plume

Hydrologic zone of influence

- R-28 produces a much larger zone of influence to pumping than R-42
- Consistent with aquifer properties at each well

Conceptualized capture zone

Maybe be up to ~400 m with sustained pumping near R-28

Cr trends during pumping at R-42

- Concentrations declined by ~27% over about 1 month
- Rebound over about 2 months

R-42 time series plot for chromium and water level during pumping and rebound sampling.

Cr trends during pumping at R-28

- Concentrations declined by ~20% over about 1.5 month
- Rebound over about 2 months

Chronology of pumping and rebound					
Well	Pumping	Pump failure	Rebound	Average Discharge Rate	pumping
R-28	8/28 - 8/30/13 (pump set in shroud in sump below screen) 9/7-11/6 (pump removed from shroud and reset above screen) 11/7-11/22/13	• 8/30 - 9/7/13 • 11/6 (1730 hrs) - 11/7/13 (0700 hrs) generator tripped	11/22/13 - 3/4/14	28.9 gpm*	rebound
	the state of the s		+	*anm = gallons per minute	

R-28 time series plot for chromium and water level during pumping and rebound sampling.

Trends of other constituents

- Other collocated constituents remained relatively stable, but
- may also show opposite trend to Cr at times

R-42 time series plots for chromium, sulfate, and nitrate during pumping and rebound sampling.

Chromium mass removal

Higher Cr mass removal efficiency at R-42)

- Higher concentrations (~800 ppb)
- 1/4 the pumping rate of R-28 (~7 gpm)

Higher Cr mass removal rates at R-28

- Lower concentrations (~300 ppb)
- 4x higher pumping rate of R-42 (29 gpm)

What we are doing in FY14

Perchlorate

Mortandad Canyon Source

- Associated with legacy plutonium processing
- Released in treatment plant effluent
- Wastewater treatment improved in 2000 to 4ppb for perchlorate

Perchlorate

Source Control

- Concentrations along pathway significantly decreasing
- Improved treatment beginning in 2000
- Reduced (near zero) liquid effluent since mid 2011
- Both?
- Lessons for Cr?

Questions?

